www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - numerische Intergration
numerische Intergration < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

numerische Intergration : Taylorformel
Status: (Frage) beantwortet Status 
Datum: 19:25 Mo 21.03.2005
Autor: ginii

hallo :-)

ich wende mich an Euch, weil ich unbedingt eine Seite/ Link für mein Thema suche : Numerische Integration durch wiederholtes Differenzieren

es wäre sehr nett, wenn Ihr mir einen Tipp geben könntet

DANKE !!!!!!!!!!!!!!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
numerische Intergration : Taylorformel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:44 Di 22.03.2005
Autor: ginii

hallo, ich bin es wieder :-)

Vielleicht könnt ihr mir anders helfen.
Bei der numerischen Integration gibt es ja verschiedene Methoden zur Berechnung des Integrals. Die Methode, die ich anwenden will, ist die Bestimmung des Integrals mit Hilfe der Taylorformel ( wiederholtes Diffenrenzieren ). Dazu benötige ich einige weitere Informationen, z.B. eine Veranschaulichung oder eine Herleitung dieser Verknüpfung von Stammfunktion und Taylorformel.

Viele liebe Grüße, ginii.

Danke.

Bezug
        
Bezug
numerische Intergration : Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Di 22.03.2005
Autor: Max

Hi ginii,

ich gehe mal davon aus, dass du sowas wissen willst wie []hier - vor allem den induktiven Nachweis der Taylor-Formel aus dem Fundamentalsatz der Analysis.

Gruß Brackhaus

Bezug
                
Bezug
numerische Intergration : Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Di 22.03.2005
Autor: ginii

Danke für die Information!!!!!!!!!!!!!!!! :-)

Aber ich habe schon diese Seite durchforscht. Was ich suche, ist die spezielle Anwendung der numerischen Integration durch wiederholtes Differenziere. Es ist gibt Methoden, wie die Simson-Regel, das Rechteckverfahren usw. Die Methode mit der Taylorformel ist ein weiteres Verfahren, um ein Integral zu bestimmen. Und zu diesem Thema suche ich Informationen.

Danke!!!!!!!!!!!!!!!!!

Bezug
                        
Bezug
numerische Intergration : Taylor und Integral
Status: (Antwort) fertig Status 
Datum: 23:17 Mo 28.03.2005
Autor: leduart


> Danke für die Information!!!!!!!!!!!!!!!! :-)
>  
> Aber ich habe schon diese Seite durchforscht. Was ich
> suche, ist die spezielle Anwendung der numerischen
> Integration durch wiederholtes Differenziere. Es ist gibt
> Methoden, wie die Simson-Regel, das Rechteckverfahren usw.
> Die Methode mit der Taylorformel ist ein weiteres
> Verfahren, um ein Integral zu bestimmen. Und zu diesem
> Thema suche ich Informationen.

Hallo Simpson und Rechteck oder Trapezregel laufen darauf hinaus das Integral durch eine lineare Funktion (Trapez, Rechteck) auf einem kleinen Intervall zu approximieren. Simpsonregel approximiert durch eine Parabel die durch die beiden Enden und den Mittelpunkt des Intervalls geht, diese wird dann integriert, und daraus kann man sich die Integrationsformel hergeleitet vorstellen. Wenn man jetzt die Näherungsfunktion nicht durch Anpassen an 2 oder 3 Punkte vorstellt, sondern dadurch, dass sie sich in dem Intervall durch Anfangswert, Anfangssteigung, Anfangskrümmung etc, also durch die Ableitungen im Anfangspkt. vorstellt, bekommt man Formeln, die nur diese Werte im Anfangspunkt enthalten. Diese Näherungsfunktion wird dann exakt integriert.
Teilintervall (a,b);  Näherungsfkt: N(x)
N(x)=f(a)+f'(a)*x+ [mm] \bruch{1}{2}f''(a)*x^{2} [/mm]
[mm] \integral_{a}^{b} [/mm] {N(x) [mm] dx}=f(a)*(a-b)+\bruch{1}{2}*f'(a)*(a^{2}-b^{2})+\bruch{1}{6}*f''(a)*(a^{3}-b^{3}) [/mm]
Damit hast du eine Formel wie die Simpsonformel und kannst rechnen.
Die Fehler sind aber im Verhältnis zum Rechenaufwand größer als bei der Simpsonregel und verbessern sich weniger gut beim halbieren der Intervalllänge. Drum glaub ich nicht, dass das Verfahren irgendwo wirklich angewendet wird.
Gruss leduart
Bitte, gern geschehen!!!!!!!!!!!!!!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de