www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - obere Schranke
obere Schranke < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

obere Schranke: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:33 Sa 09.10.2010
Autor: Ersty

Ich habe diese Frage in keinem anderen Forum gestellt!


Hi,
ich frage mich gerade, was der genaue Unterschied zwischen oberer Schranke und 1 maximalen ELement ist.

Hier die Def:
Sei [mm] \le [/mm] eine Ordnungsrelation auf A.

[mm] a\in [/mm] A ist max. Element, wenn kein b [mm] \in [/mm] A existiert : b > a.

Sei zusätzlich zur Ordnungsrelation [mm] B\subseteq [/mm] A. Dann ist a [mm] \in [/mm] A eine obere Schranke der Teilmenge B, wenn [mm] \forall [/mm] b [mm] \in [/mm] B gilt: a [mm] \ge. [/mm]

Ist a dann nicht maximales bzw. größtes Element der Teilmenge B?
Oder ist das nicht richtig, weil bei einer oberen Schranke, das a nicht in B liegen muss?

Wieso heißt es eigentlich obere Schranke? Weil es die Elemente b nach oben hin beschränkt?

Könnt ihr mir vlt ein anschauliches Beispiel geben, damit ich mit dem Begriff der oberen Schranke mehr anfangen kann.

Ich danke euch jetzt schon mal und wünsche euch ein schönes WE!

MFG Ersty

        
Bezug
obere Schranke: Beispiele
Status: (Antwort) fertig Status 
Datum: 14:13 Sa 09.10.2010
Autor: Al-Chwarizmi

Hallo Ersty,


> Hi,
>  ich frage mich gerade, was der genaue Unterschied zwischen
> einer oberen Schranke und einem maximalen ELement ist.
>  
> Hier die Def:
>  Sei [mm]\le[/mm] eine Ordnungsrelation auf A.
>  
> [mm] a\in [/mm] A ist max. Element, wenn kein b [mm] \in [/mm] A existiert mit b > a.
>  
> Sei zusätzlich zur Ordnungsrelation [mm]B\subseteq[/mm] A. Dann ist
> a [mm] \in [/mm] A eine obere Schranke der Teilmenge B, wenn [mm]\forall[/mm] b
> [mm] \in [/mm] B gilt: a [mm]\ge b[/mm]
>  
> Ist a dann nicht maximales bzw. größtes Element der
> Teilmenge B?

Um maximales Element von B zu sein, müsste [mm] a\in [/mm] B
sein, was aber hier nicht vorausgesetzt wurde.

>  Oder ist das nicht richtig, weil bei einer oberen
> Schranke, das a nicht in B liegen muss?

Genau.
  

> Wieso heißt es eigentlich obere Schranke? Weil es die
> Elemente b nach oben hin beschränkt?

Ja.
  

> Könnt ihr mir vlt ein anschauliches Beispiel geben, damit
> ich mit dem Begriff der oberen Schranke mehr anfangen
> kann.

Nehmen wir die Menge [mm] \IR [/mm]  (mit der üblichen [mm] \le [/mm] - Relation)
und ihre beiden Teilmengen

          $\ M\ =\ [mm] \{\,x\in\IR\ |\ x\,\le 5\,\}$ [/mm]

          $\ N\ =\ [mm] \{\,x\in\IR\ |\ x^2<4\,\}$ [/mm]

M besitzt ein größtes Element (nämlich die 5), aber kein
kleinstes Element.
M hat unendlich viele obere Schranken in [mm] \IR: [/mm] jede Zahl [mm] s\in\IR [/mm]
mit [mm] s\ge [/mm] 5  eignet sich dazu.
M hat aber keine untere Schranke.

N besitzt weder ein kleinstes noch ein größtes Element,
aber jeweils unendlich viele obere und untere Schranken.
Die kleinstmögliche obere Schranke von N ist die
Zahl 2, die aber nicht in N liegt und deshalb eben auch
nicht als größtes Element von N in Frage kommt.

> Ich danke euch jetzt schon mal und wünsche euch ein
> schönes WE!

Das wünsche ich dir ebenfalls !

Gruß     Al-Chw.


Bezug
                
Bezug
obere Schranke: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:21 Sa 09.10.2010
Autor: Ersty

Super Beispiele, ich habs verstanden!

Vielen herzlichen Dank!

MFG Ersty

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de