www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - offene, innere Mengen
offene, innere Mengen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

offene, innere Mengen: unklare Angabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:44 Mo 16.04.2012
Autor: clemenum

Aufgabe
Man zeige:
a)  [mm] $A^{°} =X\setminus \overline{X\setminus A} [/mm]  $
b) [mm] $\overline{A°} [/mm] = [mm] X\setminus (X\setminus A)^{°} [/mm] $


Es wurde nicht dazu gesagt, was die angegebenen Mengen bedeuten sollen, ich fass es jedoch mal so auf:
[mm] $A^{°} [/mm] $ sehe ich als das innere von $A.$
$ [mm] \overline{X\setminus A} [/mm] $ sehe ich als sehe ich als den Abschluss von $X$ ohne $A$ an. Das rechte ergibt sich dann automatisch.

So, nun zum Beweis:
x [mm] \in \overline{A} \Leftrightarrow [/mm] (x [mm] \in A^{0} \vee x\in \partial [/mm] A ) [mm] \Leftrightarrow \exists [/mm] U [mm] \in \mathcal{U}(x): U\subseteq [/mm] A  [mm] \wedge \forall U\in \mathcal{U}(x) [/mm] : [mm] A\cap [/mm] U [mm] \neq \{ \} \Leftrightarrow \forall U\in \mathcal{U}(x) [/mm] : [mm] A\cap [/mm] U [mm] \neq \{ \} \Leftrightarrow \forall U\in [/mm]
[mm] \mathcal{U}(x) [/mm] : [mm] U\not \subseteq A^{C} \Leftrightarrow x\not \in (A^{C})^{°} \Leftrightarrow [/mm]
[mm] x\in X\setminus (A^{C})^{°} [/mm]
[mm] $\overline{A} [/mm] = [mm] X\setminus (A^{C}) [/mm] ^{°}  $
[mm] $A^{°} [/mm] = [mm] X\setminus \overline{A^{C}} [/mm] $

Ist meine Vorgangsweise korrekt?

        
Bezug
offene, innere Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Mo 16.04.2012
Autor: Marcel

Hallo,

> Man zeige:
> a)  [mm]A^{°} =X\setminus \overline{X\setminus A} [/mm]

Du meinst linkerhand [mm] $A^\text{o}\,.$ [/mm] Bei Dir sieht man nur [mm] $A\,,$ [/mm] aber im Quelltext liest man [mm] [nomm]$A^{°}$[/nomm]. [/mm]

>  b)
> [mm]\overline{A°} = X\setminus (X\setminus A)^{°}[/mm]
>  
> Es wurde nicht dazu gesagt, was die angegebenen Mengen
> bedeuten sollen, ich fass es jedoch mal so auf:
> [mm]A^{°}[/mm]

[mm] $A^\text{o}$ [/mm]

> sehe ich als das innere von [mm]A.[/mm]

Ja, das ist der Kern (oder das Innere) von [mm] $A\,.$ [/mm]

>  [mm]\overline{X\setminus A}[/mm] sehe ich als sehe ich als den
> Abschluss von [mm]X[/mm] ohne [mm]A[/mm] an. Das rechte ergibt sich dann
> automatisch.
>
> So, nun zum Beweis:

Das ist der Beweis von was? Teil a)? Teil b)? Von beiden Teilen (und warum reicht dann ein Beweis - wegen de Morgan?)?

> x [mm]\in \overline{A} \Leftrightarrow[/mm] (x [mm]\in A^{0} \vee x\in \partial[/mm]
> A ) [mm]\Leftrightarrow \exists[/mm] U [mm]\in \mathcal{U}(x): U\subseteq[/mm]
> A  [mm]\wedge \forall U\in \mathcal{U}(x)[/mm] : [mm]A\cap[/mm] U [mm]\neq \{ \} \Leftrightarrow \forall U\in \mathcal{U}(x)[/mm]
> : [mm]A\cap[/mm] U [mm]\neq \{ \} \Leftrightarrow \forall U\in[/mm]
> [mm]\mathcal{U}(x)[/mm] : [mm]U\not \subseteq A^{C} \Leftrightarrow x\not \in (A^{C})^{°} \Leftrightarrow[/mm]
>  
> [mm]x\in X\setminus (A^{C})^{°}[/mm]
> [mm]\overline{A} = X\setminus (A^{C}) ^{°} [/mm]
>  [mm]A^{°} = X\setminus \overline{A^{C}}[/mm]
>
> Ist meine Vorgangsweise korrekt?  

Das ist schwer zu sagen, da Du gar nicht sagst, was (welchen Teil der AufgabeN) Du beweisen willst - aber davon abgesehen:
Zum einen musst Du sagen, wie ihr die Begriffe "offene Menge, abgeschlossene Menge, 'Kern einer Menge' und 'Abschluss einer Menge' und 'die Menge der offenen Umgebungen von [mm] $x\,$' [/mm] " definiert habt - zum anderen: Bei jedem [mm] $\gdw$ [/mm] hast Du ja zwei Richtungen zu zeigen - wenn Dir beide bei jedem gelingen und Du Dir im Klaren bist, was Du beweist (und das auch Deiner Umwelt mitteilst), dann eventuell ja.

Aber das, was nach dem letzten [mm] $\gdw$ [/mm] steht, ist mir nicht klar: Wie sind die drei Informationen da gemeint? (Also was sollen diese drei Aussagen bedeuten: Sind sie einander gleichwertig)?

Also mal ganz elementar, ohne jetzt auf das einzugehen, was Du gerechnet hast:
Wenn Du [mm] $A^\text{o}=X \setminus \overline{X \setminus A}$ [/mm] (Teil a)) zeigen sollst, dann hast Du zwei Teilmengenbeziehungen nachzuweisen:
1.) Zeige, dass [mm] $A^\text{o} \subseteq [/mm] X [mm] \setminus \overline{X \setminus A}$ [/mm]

2.) Zeigen, dass $X [mm] \setminus \overline{X \setminus A} \subseteq A^\text{o}\,.$ [/mm]

(Denn bekanntlich gilt für zwei Mengen [mm] $R=S\,$ [/mm] genau dann, wenn sowohl $R [mm] \subseteq [/mm] S$ als auch $S [mm] \subseteq [/mm] R$ gilt!)

Wie gesagt: Mir sind Eure Definitionen nicht bekannt. Zum Beispiel kann man bei obiger Behauptung a) auch ausnutzen, dass der Kern einer Menge die Vereinigung aller offenen Teilmengen dieser Menge ist...

P.S.
[mm] $X\,$ [/mm] ist hier natürlich die betrachtete Grundmenge!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de