offene Überdeckung < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
hallo
ich ich habe ein paar probleme mit ne begriffen offene Überdeckung und endlichgen Teilüberdeckungen in metrischen räumen.
Wir sollen eine eine offene überdeckung von [mm] \IR [/mm] finden, die keine endliche Teilüberdeckung besitzt. Kann mir da jemand helfen was es mit den Überdeckungen auf sich hat un wie man das problem lösen kann
danke
Ich habe die Fragen in keinen anderen Forum gestellt.
|
|
|
|
Hallo!
Grundsätzlich ist eine offene Überdeckung eine Familie von offenen Mengen, also: Eine offene Überdeckung ist eine Menge von Mengen. Klingt auf den den ersten Blick etwas kompliziert, ist aber letztendlich auch nichts anderes als eine große Schachtel, in die du viele kleine Schachteln steckst. Eine Schachtel voller Schachteln - oder eben eine Mengen voller Mengen.
Ein einfaches Beispiel ist die Menge, die die beiden Intervalle [mm] $U_1:=(0;3)$ [/mm] und [mm] $U_2:=(1;4)$ [/mm] enthält: [mm] ${\cal{U}}:=\{U_1;U_2\}$. [/mm] Insbesondere ist [mm] $\cal{U}$ [/mm] ein offene Überdeckung von $[1;2]$ in [mm] $\IR$, [/mm] weil [mm] $U_1$ [/mm] und [mm] $U_2$ [/mm] offen sind und [mm] $[1;2]\subset U_1\cup U_2$...
[/mm]
Nun zu einer offenen Überdeckung von [mm] $\R$: [/mm] Du suchst Mengen [mm] $U_i,\ i\in [/mm] I$ (I ist irgendeine Indexmenge) mit [mm] $\bigcup\limits_{i\in I}U_i\supseteq\IR$ [/mm] und alle [mm] $U_i$ [/mm] müssen offen sein.
Für die [mm] $U_i$ [/mm] bieten sich offene Intervalle besonders gut an...
Hilft dir das auf die Sprünge?
Gruß, banachella
|
|
|
|
|
Ich versteh immer noch nich wie ich dann so ein Intervall finden soll?
Kann man da jedes offene intervall nehmen oder gibt es da nur ein spezielles was die Bedingungen erfüllt? Ich hab da momentan irgendwie keinen durchblick
danke
|
|
|
|
|
Hallo,
du sollst nichts anderes zeigen als dass IR nicht kompakt ist.
Das mit den offenen Überdeckungen hat banachella schon erklärt, du sollst also eine Folge offener Teilmengen [mm] $(X_{i})_{i \in I}$ [/mm] ("Intervalle") von IR finden, deren unendliche Vereinigung $ [mm] \bigcup_{i=1}^{\infty}(X_{i})_{i \in I}$ [/mm] ganz IR überdeckt. Eine endliche Teilüberdeckung ist dann eine endliche Auswahl davon, z.B. die Vereinigung der ersten 100 Folgenglieder und diese Teilüberdeckung soll nicht ganz IR überdecken. Du musst also in der Aufgabe eine solche Folge von Mengen finden und dann zeigen, dass jede endliche Auswahl von Gliedern nicht ganz IR überdeckt, dann bist du fertig.
Klar?
LG, Andreas
|
|
|
|