offener Punkt < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Ich habe diese Frage in keinem weiteren Forum gestellt.
Hallole,
erst mal vielen dank für die schnelle antwort auf meine letzte frage :) hier kommt schon die nächste:
unser prof hat uns mal ein beispiel für einen offenen punkt gegeben, das wir allerdings nicht ganz nachvollziehen konnt. soweit ich weiß war es so:
X=(- unendlich ,0] v 1 v[2, unendlich)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:34 Sa 14.08.2004 | Autor: | andreas |
hi watschelfuss
wenn man in der topologie von offenen mengen spricht muss man im prinzip immer angeben, bezüglich welcher topologie:
sei z.b. [m] X = \{0, 1, 2 \} [/m] mit den zwei topologien [m] \mathcal{T}_1 = \{ \emptyset, X \} [/m] und [m] \mathcal{T}_2 = \{ \emptyset, \{1 \}, \{1, 2 \}, X \} [/m], dann ist der punkt [m] \{ 1 \} [/m] offen in [m] \mathcal{T}_2 [/m] (da [m] \{ 1 \} \in \mathcal{T}_2 [/m]), aber nicht offen in [m] \mathcal{T}_1 [/m].
bei deinem konkreten problem, gehe ich mal davon aus, dass du die menge [m] X = ( - \infty, 0] \cup \{1\} \cup [2, \infty) [/m] mit der von der standardtopologie [m] \mathcal{T}_S[/m] in [m] \mathbb{R} [/m] induzierten spurtopologie [m] \mathcal{T}_X = \{ A \subset X: \; \exists \, U \in \mathcal{T}_S: A = U \cap X \} [/m] betrachtest. darin sind einfach die teilmenegn von in [m] \mathbb{R} [/m] offenen mengen enthalten, die in $X$ liegen, also z.b. sind bezüglich dieser topologie die mengen [m] B = (-\infty, -1), \, C = (-\frac{3}{2}, - \frac{1}{2}), \, D = (10, 11) \cup (12, 13) [/m] offen, die in [m] \mathbb{R} [/m] auch offen sind. aber es kommen noch weitere mengen hinzu, so z.b. [m] E = (-1, 0] [/m], da sich dies als [m] E = X \cap (-1, \frac{1}{2} ) [/m] darstellen lässt, wobei [m] (-1, \frac{1}{2} ) \in \mathcal{T}_S [/m] und somit [m] E \in \mathcal{T}_X [/m]
genau so verhält es sich mit dem punkt [m] \{1\} [/m]. dieser ist nach obiger definition nämlich auch offen - also in der topologie enthalten: [m] \{1\} = X \cap (\frac{1}{2}, \frac{3}{2}) [/m] und [m] (\frac{1}{2}, \frac{3}{2}) \in \mathcal{T}_S [/m]
das entscheidende ist also die topologie, die man auf der menge definiert. bei solchen teilmengen von [m] \mathbb{R} [/m] wie sie hier vorlg gbetrachtet man in der regel die von der standardtopologie induzierte spurtopologie.
man kann aber auf jeder menge eine topologie definieren, in der jeder punkt offen ist: nämlich die diskrete topologie (siehe die antwort von stefan auf deine letzte frage).
soweit erstmal. du kannst ja nachfragen, wenn dir etwas unklar ist.
andreas
|
|
|
|