www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - orthogonaleGruppen,Normalteile
orthogonaleGruppen,Normalteile < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

orthogonaleGruppen,Normalteile: Hilfe, Ansatz, Erklärung
Status: (Frage) überfällig Status 
Datum: 20:09 So 27.06.2010
Autor: mathequestion2

Aufgabe 1
Sei $Q [mm] \subseteq \IR^2$ [/mm] das Quadrat mit den Eckpunkten (1, 1), (1,−1), (−1, 1), (−1,−1), und sei [mm] $G\subseteq O(\IR^2)$ [/mm]
[mm] $O(\IR^2)$ [/mm] die Untergruppe, die aus allen [mm] $g\inO(\IR^2)$ [/mm] mit $g(Q) = Q$ besteht.
(i) Bestimmen Sie alle Untergruppen von G.
(ii) Welche davon sind Normalteiler?

Aufgabe 2
Sei U eine Untergruppe einer Gruppe G.
(i) Zeigen Sie, dass $N := [mm] \{x\in G : xUx^{-1} = U\}$ [/mm] eine Untergruppe von G ist.
(ii) Beweisen Sie, dass U ein Normalteiler von N ist.

zur Aufgabe 2
(i) Hier soll ich zeigen, dass aus [mm] $a,b\in [/mm] N [mm] \Rightarrow a\circ b^{-1}\in [/mm] N$ folgt.
Sei a,b aus N, also
[mm] $aua^{-1}=u \forall u\in U\gdw u=a^{-1}ua\forall u\in [/mm] U$ und
[mm] $bub^{-1}=u \forall u\in U\gdw u=b^{-1}ub\forall u\in [/mm] U$
Damit ist [mm] $a^{-1}ua=b^{-1}ub\gdw u=ab^{-1}uba^{-1}\gdw u=(ab^{-1})u(ab^{-1})^{-1}\gdw ab^{-1} \in [/mm] N$ für alle [mm] $u\in [/mm] U$. Reicht das?[keineahnung]

(ii) Diesmal soll ich zeigen das U ein Normalteiler von N ist, also U eine Untergruppe von N mit zusätzlich einer der Eigenschaften:
- aH=Ha
- [mm] $aHa^{-1}\subset [/mm] H$
- [mm] $aHa^{-1}=H [/mm]

Wenn ich mir jetzt a,b aus U nehme, muss ich wieder zeigen, dass [mm] $ab^{-1}\in [/mm] U$ gilt.
Da habe ich aber Probleme überhaupt erst die Menge U zu definieren. Mein Versuch wäre:
[mm] $U:=\{x\in G: Nx=xN\}$ [/mm] [keineahnung]
Ich habe folgendes probiert:
[mm] $a,b\in [/mm] U$ [mm] $x,y\in [/mm] N$.
[mm] $xax^{-1}a=a$, $yby^{-1}=b \gdw yb^{-1}y^{-1}=b^{-1}$ [/mm]
Da ich vorwärts kein Plan habe rechne ich rückwärts.
[mm] $ab^{-1}=xax^{-1}yb^{-1}y^{-1}$ [/mm]
Leider weiß ich nicht, wie ich es weiter zusammen fassen soll. Ich muss ja irgendwie auf [mm] $xabx^{-1}=ab$ [/mm] kommen, oder? [keineahnung]
Welche der Eigenschaften des Normalteilers soll ich überhaupt benutzen.

Aufgabe 1
Hier hab ich leider absolut keinen Schimmer. Wenn ich die Aufgabenstellung mir anschaue, weiß ich nur, das Q eine Teilmenge von Paaren (x,y) aus dem [mm] $\IR^2$ [/mm] sind. Es gilt auch [mm] $(1,1),(-1,1),(1,-1),(-1,-1)\in [/mm] Q$. G ist irgendeine Untergruppe der Orthogonalen Gruppe [mm] $\IR^2$, [/mm] die irgendwie das Q als Fixpunkte hat. Ich weiß aber nicht, wie ich mir das Anschaulich vorstellen soll und ich die Untergruppen bestimmen kann?

Wäre toll wenn sich eine(r) Zeitnehmen würde mir das zu erklären. Diese Gruppentheorie ist überhaupt nicht mein Ding.

        
Bezug
orthogonaleGruppen,Normalteile: Aufg. 1)
Status: (Antwort) fertig Status 
Datum: 08:43 Mo 28.06.2010
Autor: angela.h.b.


> Sei [mm]Q \subseteq \IR^2[/mm] das Quadrat mit den Eckpunkten (1,
> 1), (1,−1), (−1, 1), (−1,−1), und sei [mm]G\subseteq O(\IR^2)[/mm]
>  >  
> Wäre toll wenn sich eine(r) Zeitnehmen würde mir das zu
> erklären. Diese Gruppentheorie ist überhaupt nicht mein
> Ding.

> [mm]O(\IR^2)[/mm] die Untergruppe, die aus allen [mm]g\inO(\IR^2)[/mm] mit
> [mm]g(Q) = Q[/mm] besteht.
>  (i) Bestimmen Sie alle Untergruppen von G.
>  (ii) Welche davon sind Normalteiler?

> Aufgabe 1
>  Hier hab ich leider absolut keinen Schimmer. Wenn ich die
> Aufgabenstellung mir anschaue, weiß ich nur, das Q eine
> Teilmenge von Paaren (x,y) aus dem [mm]\IR^2[/mm] sind. Es gilt auch
> [mm](1,1),(-1,1),(1,-1),(-1,-1)\in Q[/mm]. G ist irgendeine
> Untergruppe der Orthogonalen Gruppe [mm]\IR^2[/mm], die irgendwie
> das Q als Fixpunkte hat. Ich weiß aber nicht, wie ich mir
> das Anschaulich vorstellen soll und ich die Untergruppen
> bestimmen kann?

Hallo,

Du hast ein Quadrat gegeben mit den 4 angegebenen Eckpunkten, und in G sind die Deckabbildungen des Quadrates - also gewisse Spiegelungen und Drehungen. Welche?

Gruß v. Angela

Bezug
        
Bezug
orthogonaleGruppen,Normalteile: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 29.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de