www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - orthogonale Ebenen
orthogonale Ebenen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

orthogonale Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Di 10.04.2012
Autor: tynia

Hallo zusammen. Ich hoffe ihr könnt mir bei einem Problem helfen.

Ich habe eine Ebene in der Form:

[mm] E:\vec{x}=a_{0}+a_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3} [/mm]

Ich brauche nun eine Ebene, die orthogonal zu dieser ist und durch den Punkt [mm] ao=\vektor{ao_{1} \\ ao_{2} \\ ao_{3} } [/mm] geht.

Hat da jemand ne Idee?

VG
tynia

        
Bezug
orthogonale Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Di 10.04.2012
Autor: angela.h.b.


> Hallo zusammen. Ich hoffe ihr könnt mir bei einem Problem
> helfen.
>
> Ich habe eine Ebene in der Form:
>  
> [mm]E:\vec{x}=a_{0}+a_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3}[/mm]

Hallo,

das glaube ich kaum...
Ich glaube aber, daß Dir die Gleichung Deiner Ebene in der Form
E:   [mm] \red{0}=a_{0}+a_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3} [/mm]
vorliegt.


>  
> Ich brauche nun eine Ebene, die orthogonal zu dieser ist
> und durch den Punkt [mm]ao=\vektor{ao_{1} \\ ao_{2} \\ ao_{3} }[/mm]
> geht.
>  
> Hat da jemand ne Idee?

Der Normalenvektor Deiner Ebene ist der  Vektor [mm] \vec{n}=\vektor{a_1\\a_2\\a_3}. [/mm]

Wenn Du eine dazu senkrechte Ebene E' hast, ist deren Normalenvektor [mm] \vec{n’}:=\vektor{a_1'\\a_2'\\a_3'} [/mm] orthogonal zu [mm] \vec{n}. [/mm]
Einen solchen Vektor [mm] \vec{n'} [/mm] könntest Du erstmal bestimmen.

Und dann organisierst Du in der Gleichung
E':  [mm] 0=a_{0}'+a_{1}'x_{1}+a_{2}'x_{2}+a_{3}'x_{3} [/mm]
das [mm] a_0' [/mm] so, daß Dein Punkt die Ebenengleichung löst.

LG Angela


>  
> VG
>  tynia


Bezug
                
Bezug
orthogonale Ebenen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:44 Di 10.04.2012
Autor: tynia

Danke erstmal für deine Antwort. Das mit dem Normalenvektor bestimmen habe ich verstanden und auch hinbekommen, aber jetzt weiß ich nicht genau wie ich weitermachen soll.

Ich habe jetzt einen Vektor, der zu meiner Ebene orthogonal ist und einen Punkt, durch den die Ebene laufen soll.

Tut mir leid, aber ich habe gerade keine Ahnung. Kannst du mir nochmal ne Hilfestellung geben

Bezug
                        
Bezug
orthogonale Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:56 Di 10.04.2012
Autor: angela.h.b.


> Danke erstmal für deine Antwort. Das mit dem
> Normalenvektor bestimmen habe ich verstanden und auch
> hinbekommen, aber jetzt weiß ich nicht genau wie ich
> weitermachen soll.
>
> Ich habe jetzt einen Vektor, der zu meiner Ebene orthogonal
> ist und einen Punkt, durch den die Ebene laufen soll.

>
> Tut mir leid, aber ich habe gerade keine Ahnung. Kannst du
> mir nochmal ne Hilfestellung geben

Hallo,

vielleicht zeigst Du einfach mal die konkrete Aufgabe, falls es eine gibt, und auf jeden Fall die von Dir bisher durchgeführten Rechnungen.

Mir fällt nämlich beim jetzigen Kenntnisstand über dein Tun nichts anderes ein als das zu wiederholen, was ich bereits schieb.

LG Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de