www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - orthogonale matrix
orthogonale matrix < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

orthogonale matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Di 22.06.2010
Autor: simplify

Aufgabe
Die [mm] \mu_{1},. [/mm] . . [mm] ,\mu_{n} [/mm] sollen Erwartungswert Null haben und unkorreliert sein.
a) Zeigen Sie, dass die Komponenten von [mm] O(\mu_{1},. [/mm] . . [mm] ,\mu_{n})^{T} [/mm] ebenfalls unkorreliert sind, wenn O eine
orthogonale n × n-Matrix ist.
b) Reicht es vorauszusetzen, dass O eine m × n-Matrix mit orthogonalen Zeilen ist?
c) Reicht es vorauszusetzen, dass O eine m × n-Matrix mit orthogonalen Spalten ist?
d) Sind die Komponenten von  O ( [mm] \mu_{1},. [/mm] . . [mm] ,\mu_{n})> [/mm] unabhängig, wenn die [mm] \mu_{1},. [/mm] . . [mm] ,\mu_{n} [/mm]  unabhängig sind?

hallo,
ich hab mich jetzt lange mit dieser aufgabe beschäftigt und komm an einer stelle nicht weiter.
bis jetzt habe ich mir folgendes überlegt:
a)Sei O eine orthogonale matrix mit Einträgen [mm] O_{ij}. [/mm]
   dann ist [mm] O(\mu_{1},. [/mm] . . [mm] ,\mu_{n})^{T}=(\summe_{i=1}^{n}O_{1i}\mu_{i} [/mm] ,..., [mm] \summe_{i=1}^{n}O_{ni}\mu_{i})^{T} [/mm] =:a
jetzt soll ich zeigen dass die einzelnen komponenten dieses vektors unkorreliert sind, d.h. [mm] E(\summe_{i=1}^{n}O_{1i}\mu_{i}*....*\summe_{i=1}^{n}O_{ni}\mu_{i})=E(\summe_{i=1}^{n}O_{1i}\mu_{i})*...*E(\summe_{i=1}^{n}O_{ni}\mu_{i}) [/mm]
weiter weiß ich, dass  X,Y orthogonal sind [mm] \gdw [/mm] E(X*Y)= 0 ist
                                           [mm] \gdw [/mm] (X,Y)=0
ich weiß jetzt also, da O orthogonal ist, dass die spalten und zeilen von O orthonormal also insbesondere orthogonal sind, und da in jedem eintrag von a eine gesamte spalte von O vorkommt, muss ich dann wahrscheinlich auf orthogonalität der einträge in a schließen...ich weiß nur leider nicht warum bzw. wie???

deshalb würde ich auch sagen, dass c) stimmt, b)jedoch falsch ist
bei d) bin ich völlig ansatzlos

danke für eure mühe im voraus

        
Bezug
orthogonale matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Di 22.06.2010
Autor: pokermoe

Hi

Bist du sciher, dass du zeigen musst , dass sich die Erwartungswerte
faktorisieren ?
Ist hier von paarweiser unkorreliertheit die Rede, oder was ist gemeint mit:
"Die Komponenten sind unkorreliert" ?


Gruß mOe

Bezug
                
Bezug
orthogonale matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:14 Di 22.06.2010
Autor: simplify

naja ich muss ja unkorreliertheit zeigen , d.h.: X,Y unkorreliert [mm] \gdw [/mm] cov(X,Y)=E(X*Y)-E(X)E(Y)=0
ist doch so definiert, oder?
und in der aufgabenstellung steht wirklich komponenten....

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de