www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - orthonormalbasis?
orthonormalbasis? < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

orthonormalbasis?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:22 Do 04.09.2008
Autor: koko

hallo leute,

ich hab da ne theoretische frage an euch, wäre echt super wenn mir da jemand ne antwort dazu geben könnte.

also ich hab da [mm] U=\left\{ \vec x \in \IR^3 | \vec x \perp (1,1,2,)^T \right\} [/mm] = [mm] \left\{ \vec x \in \IR^3 | x_1+x_2+2x_3=0 \right\} [/mm]  


hier wird der [mm] \IR^3 [/mm] betrachtet, nun ist hier eine orthonormalbasis des linearen unterraumes gesucht.

1. hab ich hier...oder muss ich hier 3 orthonormale basen haben, da ich mich im [mm] \IR^3 [/mm] befinde?

2. ist [mm] (1,1,2,)^T [/mm] bereits keine orthogonalbasis? (müsste man nur noch normieren um ne orthonormalbasis zu erhalten)

3. ich versteh die angabe mit dem unterraum und was da drin steht nicht ganz bzw. ich kann mir drunter nichts vorstellen...könnte mir das jemand ganz kurz erklären?


wie gesagt, die fragen sind eher aufs verständniss bezogen und nicht auf das rechnen.

ich bedanke mich mal schon im voraus,


mfg

        
Bezug
orthonormalbasis?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:38 Do 04.09.2008
Autor: angela.h.b.


> hallo leute,
>  
> ich hab da ne theoretische frage an euch, wäre echt super
> wenn mir da jemand ne antwort dazu geben könnte.
>  
> also ich hab da [mm]U=\left\{ \vec x \in \IR^3 | \vec x \perp (1,1,2,)^T \right\}[/mm]
> = [mm]\left\{ \vec x \in \IR^3 | x_1+x_2+2x_3=0 \right\}[/mm]  
>
>
> hier wird der [mm]\IR^3[/mm] betrachtet, nun ist hier eine
> orthonormalbasis des linearen unterraumes gesucht.
>  
> 1. hab ich hier...oder muss ich hier 3 orthonormale basen
> haben, da ich mich im [mm]\IR^3[/mm] befinde?
>  
> 2. ist [mm](1,1,2,)^T[/mm] bereits keine orthogonalbasis? (müsste
> man nur noch normieren um ne orthonormalbasis zu erhalten)
>  
> 3. ich versteh die angabe mit dem unterraum und was da drin
> steht nicht ganz bzw. ich kann mir drunter nichts
> vorstellen...könnte mir das jemand ganz kurz erklären?
>  
>
> wie gesagt, die fragen sind eher aufs verständniss bezogen
> und nicht auf das rechnen.
>  
> ich bedanke mich mal schon im voraus,

Hallo,

hier purzelt's etwas durcheinander...

Du mußt unterscheiden zwischen Basen und Vekoren.

Basen bestehen aus Vektoren, derart, daß die enthaltenen Vektoren linear unabhängig sind und man durch Linearkombination der in der Vektoren der basis, der Basisvektoren, jedes Element des Vektorraumes (zu dem die Basis gehört) erzeugen kann.

Eine Orthonomalbasis ist eine Basis, deren Vektoren zusätzlich paarweise orthogonal sind.

Um auf [mm] U=\left\{ \vec x \in \IR^3 | \vec x \perp (1,1,2,)^T \right\}[/mm] [/mm] = [mm]\left\{ \vec x \in \IR^3 | x_1+x_2+2x_3=0 \right\}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

   zu sprechen zu kommen.

U ist eine Teilmenge des \IR³, aber Du benötigst nicht drei Vektoren, um U zu erzeugen. (Deine Basis wird aus zwei Vektoren bestehen)

Was ist U? In U sind alle vektoren \vektor{x_1\\x_2\\x_3}, die das Gleichungssystem x_1+x_2+2x_3=0 lösen.

Du sollst nun linear unabhängige, orthogonale Vektoren  der Länge 1 finden, mit denen Du jede Lösung erzeugen kannst.

Kannst Du eigentlich das Gleichungssystem lösen?


Du kannst auch (1,1,2,)^T  durch zwei normierte Vektoren zu einer Orthogonalbasis ergänzen. Die beiden ergänzenden Vektoren sind dann eine Basis von U.

Gruß v. Angela

Ein Vektor, der in U liegt, ist \vektor{



Bezug
                
Bezug
orthonormalbasis?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:04 Do 04.09.2008
Autor: koko

jaja zuerst mal danke...aber das mit den vektoren, basen und linearen abhängigkeiten ist mir schon klar.

aber wie kommst du drauf, dass ich nur 2 vektoren für die basis brauche?

klar kann ich das gleichungsysetm lösen...da komm ich dann auf, [mm] \vec{x} [/mm] =s*(-1,1,0)+t*(-2,0,1) für ein beliebiges [mm] \vec{x} [/mm] aus U...und wie weiter?

und zweitesn, warum sollte ich (1,1,2) nicht als basisi verwenden können...ich hab da igrendiwe ein verständniss problem, denn es heist ja in der angabe...dass [mm] \vec{x} [/mm] auf (1,1,2) senkrecht ist oder?

danke,

mfg

Bezug
                        
Bezug
orthonormalbasis?: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 Do 04.09.2008
Autor: angela.h.b.


> jaja zuerst mal danke...aber das mit den vektoren, basen
> und linearen abhängigkeiten ist mir schon klar.
>  
> aber wie kommst du drauf, dass ich nur 2 vektoren für die
> basis brauche?

Hallo,

jahrelanges Training...

>  
> klar kann ich das gleichungsysetm lösen...da komm ich dann
> auf, [mm]\vec{x}[/mm] =s*(-1,1,0)+t*(-2,0,1) für ein beliebiges
> [mm]\vec{x}[/mm] aus U...und wie weiter?

Ah, das ist doch schon prima.

Es ist ( (-1,1,0), (-2,0,1)) eine Basis von U  (U ist ja der Lösungsraum der besagten Gleichung.)

Nun sind die beiden leider noch nicht orthogonal.

Entweder nimmst Du jetzt das Gram-Schmidt-Verfahren, oder Du bestimmst einen Vektor, der aus der Linearkombination der beiden besteht und zu (-1,1,0) orthogonal ist, löst also

[mm] \vektor{-1\\1\\0}*(a\vektor{-1\\1\\0}+b\vektor{-2\\0\\1})=0. [/mm]

> und zweitesn, warum sollte ich (1,1,2) nicht als basisi
> verwenden können...i

Als Basis sowieso nicht. Wenn schon, dann als Basisvektor.

Der von Dir vorgeschlagene Vektor hat aber ein großes Manko: er ist doch gar kein Element von U. In U sind die Vektoren, die zu (1,1,2)  senkrecht sind. (1,1,2)  ist nicht orthogonal zu (1,1,2) .

Gruß v. Angela


ch hab da igrendiwe ein verständniss

> problem, denn es heist ja in der angabe...dass [mm]\vec{x}[/mm] auf
> (1,1,2) senkrecht ist oder?
>  
> danke,
>
> mfg


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de