www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - p-sylow-gruppe
p-sylow-gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

p-sylow-gruppe: sylow-sätze
Status: (Frage) beantwortet Status 
Datum: 13:40 Sa 29.05.2010
Autor: oeli1985

Aufgabe
Konstruktion von Normalteilern über sylow-sätze

sylow-sätze:
sei p eine primzahl und G einer Gruppe mit [mm] |G|=p^{r}m, [/mm] wobei r,m [mm] \in \IN, p\not=m [/mm] und r [mm] \ge [/mm] 1

1. es existiert eine p-sylow-gruppe S [mm] \subset [/mm] G
2. für alle p-untergruppen H [mm] \subset [/mm] G existiert eine p-sylow-gruppe S [mm] \subset [/mm] G, so dass H [mm] \subset [/mm] S
3. S,S' sind p-sylow-gruppen, dann existiert ein a [mm] \in G:S'=aSa^{-1} [/mm] und für alle [mm] g\in [/mm] G: [mm] gSg^{-1} [/mm] ist p-sylow-gruppe
4. [mm] |Syl_{p}(G)|=s \Rightarrow [/mm] s|m und s [mm] \equiv [/mm] 1 (p)

Hallo zusammen,
ich beschäftige mich gerade bzgl. meiner examensvorbereitung mit den p-sylow-gruppen bzw spezieller mit den sylow-sätzen.

aus diesen lässt sich ja ableiten, dass eine gruppe einen nicht-trivialen normalteiler besitzt, falls sie eine "eindeutige" p-sylow-gruppe besitzt, denn:

1. [mm] \Rightarrow \exists [/mm] p-sylow-gruppe S [mm] \subset [/mm] G
[mm] \Rightarrow \forall [/mm] g [mm] \in [/mm] G: [mm] gSg^{-1} [/mm] ist p-sylow-gruppe nach 3.
[mm] \Rightarrow gSg^{-1}=S, [/mm] falls S ist einzige p-sylow-untergruppe
[mm] \Rightarrow [/mm] S ist normalteiler

wenn nun [mm] |G|=p^{r}m [/mm] mit m ist ebenfalls eine primzahl, aber p [mm] \not= [/mm] m, dann folgt immer, dass [mm] |Syl_{p}|=1 [/mm] und die entsprechende p-sylow-gruppe ist somit normalteiler.

jetzt habe ich aber in einem prüfungsprotokoll gelesen, dass der prof nach der begründung für die existenz eines normalteilers einer gruppe der ordnung 56 anhand der sylow-sätze gefragt hat

wenn ich dieses problem angehe, komme ich darauf, dass es entweder 1 oder 8 7-sylow-gruppen bzw. eine oder 7 2-sylow-gruppen gibt.

laut prüfungsprotokoll folgt aus dem 3. sylow-satz, dass es entweder nur 1 7-sylow-gruppe oder nur eine 2-sylow-gruppe gibt und nach dem 2. sylow-satz gilt dann, dass ein normalteiler existiert

diese folgerungen sind mir beide nicht klar. es wäre nett, wenn mir jemand weiterhelfen könnte.

grüße,
patrick

        
Bezug
p-sylow-gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Mo 31.05.2010
Autor: felixf

Moin Patrick!

> Konstruktion von Normalteilern über sylow-sätze
>  
> sylow-sätze:
>  sei p eine primzahl und G einer Gruppe mit [mm]|G|=p^{r}m,[/mm]
> wobei r,m [mm]\in \IN, p\not=m[/mm] und r [mm]\ge[/mm] 1
>  
> 1. es existiert eine p-sylow-gruppe S [mm]\subset[/mm] G
>  2. für alle p-untergruppen H [mm]\subset[/mm] G existiert eine
> p-sylow-gruppe S [mm]\subset[/mm] G, so dass H [mm]\subset[/mm] S
>  3. S,S' sind p-sylow-gruppen, dann existiert ein a [mm]\in G:S'=aSa^{-1}[/mm]
> und für alle [mm]g\in[/mm] G: [mm]gSg^{-1}[/mm] ist p-sylow-gruppe
>  4. [mm]|Syl_{p}(G)|=s \Rightarrow[/mm] s|m und s [mm]\equiv[/mm] 1 (p)
>  Hallo zusammen,
>  ich beschäftige mich gerade bzgl. meiner
> examensvorbereitung mit den p-sylow-gruppen bzw spezieller
> mit den sylow-sätzen.
>  
> aus diesen lässt sich ja ableiten, dass eine gruppe einen
> nicht-trivialen normalteiler besitzt, falls sie eine
> "eindeutige" p-sylow-gruppe besitzt, denn:
>  
> 1. [mm]\Rightarrow \exists[/mm] p-sylow-gruppe S [mm]\subset[/mm] G
>  [mm]\Rightarrow \forall[/mm] g [mm]\in[/mm] G: [mm]gSg^{-1}[/mm] ist p-sylow-gruppe
> nach 3.
>  [mm]\Rightarrow gSg^{-1}=S,[/mm] falls S ist einzige
> p-sylow-untergruppe
>  [mm]\Rightarrow[/mm] S ist normalteiler

Nicht perfekt aufgeschrieben, aber ok.

> wenn nun [mm]|G|=p^{r}m[/mm] mit m ist ebenfalls eine primzahl, aber
> p [mm]\not=[/mm] m, dann folgt immer, dass [mm]|Syl_{p}|=1[/mm] und die
> entsprechende p-sylow-gruppe ist somit normalteiler.
>  
> jetzt habe ich aber in einem prüfungsprotokoll gelesen,
> dass der prof nach der begründung für die existenz eines
> normalteilers einer gruppe der ordnung 56 anhand der
> sylow-sätze gefragt hat
>  
> wenn ich dieses problem angehe, komme ich darauf, dass es
> entweder 1 oder 8 7-sylow-gruppen bzw. eine oder 7
> 2-sylow-gruppen gibt.
>  
> laut prüfungsprotokoll folgt aus dem 3. sylow-satz, dass
> es entweder nur 1 7-sylow-gruppe oder nur eine
> 2-sylow-gruppe gibt und nach dem 2. sylow-satz gilt dann,
> dass ein normalteiler existiert
>  
> diese folgerungen sind mir beide nicht klar. es wäre nett,
> wenn mir jemand weiterhelfen könnte.

Da braucht man einen Trick: man schaut sich an, wieviele Elemente es von Ordnung 7 bzw. 2 gibt/geben kann/geben muss.

Zwei Untergruppen der Ordnung 7 sind entweder gleich oder haben nur das neutrale Element gemeinsam (warum?). Wenn es also 8 7-Sylow-UGen gibt, so muss es $8 [mm] \cdot [/mm] (7 - 1) = 48$ Elemente der Ordnung 7 geben. Es gibt ein Element der Ordnung 1, womit es hoechstens 56 - 48 - 1 = 7 Elemente der Ordnung 2 (oder 4 oder 8) geben kann.

Jede 2-Sylow-UG umfasst jetzt jedoch 8 Elemente. Kann es also mehr als eine 2-Sylow-UG geben?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de