p prim <=> Z/pZ Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:06 Di 31.10.2006 | Autor: | Geonosis |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo liebe Gemeinde
Ich hoffe ihr könnt mir helfen!
Ich soll zeigen, dass [mm] \IZ/p\IZ [/mm] einen Körper bildet, genau dann, wenn p prim ist.
Ich weiß bereits, dass [mm] \IZ/p\IZ [/mm] ein Ring ist. Für [mm] (\IZ/p\IZ, [/mm] *) habe ich Kommutativität und das neutrale Element bereits nachgewiesen.
Ich habe auch schon gezeigt, dass p prim sein muss, wenn Z/pZ ein Körper sein soll (also die eine Richtung der Aufgabe).
In die andere Richtung muss ich noch die Existenz des Inversen bzgl. * nachweisen, wenn p prim ist - leider hab ich da nicht wirklich eine Idee :-( Ich hoffe, jemand kann mir eine Hilfestellung geben bzw. einen Tipp geben...!
Vielen, vielen Dank,
Geonosis
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:56 Di 31.10.2006 | Autor: | felixf |
Hallo Geonosis!
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hallo liebe Gemeinde
>
> Ich hoffe ihr könnt mir helfen!
>
> Ich soll zeigen, dass [mm]\IZ/p\IZ[/mm] einen Körper bildet, genau
> dann, wenn p prim ist.
>
> Ich weiß bereits, dass [mm]\IZ/p\IZ[/mm] ein Ring ist. Für
> [mm](\IZ/p\IZ,[/mm] *) habe ich Kommutativität und das neutrale
> Element bereits nachgewiesen.
> Ich habe auch schon gezeigt, dass p prim sein muss, wenn
> Z/pZ ein Körper sein soll (also die eine Richtung der
> Aufgabe).
>
> In die andere Richtung muss ich noch die Existenz des
> Inversen bzgl. * nachweisen, wenn p prim ist - leider hab
> ich da nicht wirklich eine Idee :-( Ich hoffe, jemand kann
> mir eine Hilfestellung geben bzw. einen Tipp geben...!
Wenn $p$ prim ist, dann ist [mm] $\IZ/p\IZ$ [/mm] nullteilerfrei, d.h. ist $x y = 0$ in [mm] $\IZ/p\IZ$, [/mm] dann ist $x = 0$ oder $y = 0$.
Also ist [mm] $\IZ/p\IZ$ [/mm] ein endlicher nullteilerfreier kommutativer Ring. Daraus folgt schon, dass es ein Koerper ist; schau dazu mal hier.
Alternativ kannst du auch ausnutzen, dass fuer $x [mm] \in \IZ$ [/mm] mit $p [mm] \nmid [/mm] x$ es ganze Zahlen $a, b [mm] \in \IZ$ [/mm] gibt mit $a x + b p = 1$ (Bezout-Gleichung). Dies bedeutet aber gerade, dass $a x = 1$ in [mm] $\IZ/p\IZ$ [/mm] ist (siehst du warum?), also dass $a$ in [mm] $\IZ/p\IZ$ [/mm] invertierbar ist. Also sind alle Elemente in [mm] $\IZ/p\IZ$ [/mm] ausser 0 invertierbar (siehst du das?).
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:41 Mi 01.11.2006 | Autor: | Geonosis |
Vielen Dank!
Das man aus der Nullteilerfreiheit folgern kann, dass es ein Körper ist wussten wir noch nicht! Aber das zweite hat mir sehr geholfen! p ist ja in der Restklasse der 0 und deswegen fällt der zweite Summand weg :)
Vielen, vielen Dank und beste Grüße,
Geonosis!
|
|
|
|