www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - p prim <=> Z/pZ Körper
p prim <=> Z/pZ Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

p prim <=> Z/pZ Körper: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 21:06 Di 31.10.2006
Autor: Geonosis

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo liebe Gemeinde :-)

Ich hoffe ihr könnt mir helfen!

Ich soll zeigen, dass [mm] \IZ/p\IZ [/mm] einen Körper bildet, genau dann, wenn p prim ist.

Ich weiß bereits, dass [mm] \IZ/p\IZ [/mm] ein Ring ist. Für [mm] (\IZ/p\IZ, [/mm] *) habe ich Kommutativität und  das neutrale Element bereits nachgewiesen.
Ich habe auch schon gezeigt, dass p prim sein muss, wenn Z/pZ ein Körper sein soll (also die eine Richtung der Aufgabe).

In die andere Richtung muss ich noch die Existenz des Inversen bzgl. * nachweisen, wenn p prim ist - leider hab ich da nicht wirklich eine Idee :-( Ich hoffe, jemand kann mir eine Hilfestellung geben bzw. einen Tipp geben...!

Vielen, vielen Dank,

Geonosis

        
Bezug
p prim <=> Z/pZ Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Di 31.10.2006
Autor: felixf

Hallo Geonosis!

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo liebe Gemeinde :-)
>  
> Ich hoffe ihr könnt mir helfen!
>
> Ich soll zeigen, dass [mm]\IZ/p\IZ[/mm] einen Körper bildet, genau
> dann, wenn p prim ist.
>  
> Ich weiß bereits, dass [mm]\IZ/p\IZ[/mm] ein Ring ist. Für
> [mm](\IZ/p\IZ,[/mm] *) habe ich Kommutativität und  das neutrale
> Element bereits nachgewiesen.
>  Ich habe auch schon gezeigt, dass p prim sein muss, wenn
> Z/pZ ein Körper sein soll (also die eine Richtung der
> Aufgabe).
>  
> In die andere Richtung muss ich noch die Existenz des
> Inversen bzgl. * nachweisen, wenn p prim ist - leider hab
> ich da nicht wirklich eine Idee :-( Ich hoffe, jemand kann
> mir eine Hilfestellung geben bzw. einen Tipp geben...!

Wenn $p$ prim ist, dann ist [mm] $\IZ/p\IZ$ [/mm] nullteilerfrei, d.h. ist $x y = 0$ in [mm] $\IZ/p\IZ$, [/mm] dann ist $x = 0$ oder $y = 0$.

Also ist [mm] $\IZ/p\IZ$ [/mm] ein endlicher nullteilerfreier kommutativer Ring. Daraus folgt schon, dass es ein Koerper ist; schau dazu mal hier.


Alternativ kannst du auch ausnutzen, dass fuer $x [mm] \in \IZ$ [/mm] mit $p [mm] \nmid [/mm] x$ es ganze Zahlen $a, b [mm] \in \IZ$ [/mm] gibt mit $a x + b p = 1$ (Bezout-Gleichung). Dies bedeutet aber gerade, dass $a x = 1$ in [mm] $\IZ/p\IZ$ [/mm] ist (siehst du warum?), also dass $a$ in [mm] $\IZ/p\IZ$ [/mm] invertierbar ist. Also sind alle Elemente in [mm] $\IZ/p\IZ$ [/mm] ausser 0 invertierbar (siehst du das?).

LG Felix


Bezug
                
Bezug
p prim <=> Z/pZ Körper: Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:41 Mi 01.11.2006
Autor: Geonosis

Vielen Dank!

Das man aus der Nullteilerfreiheit folgern kann, dass es ein Körper ist wussten wir noch nicht! Aber das zweite hat mir sehr geholfen! p ist ja in der Restklasse der 0 und deswegen fällt der zweite Summand weg :)

Vielen, vielen Dank und beste Grüße,

Geonosis!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de