www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - parallele tangenten
parallele tangenten < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

parallele tangenten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:24 Fr 14.08.2009
Autor: mef

Aufgabe
In welchem Punkt haben die Graphen von f und g parallele tangenten?
[mm] f(x)=3/8x^{2}, g(x)=4x-1/5x^{2} [/mm]

also damit die tangenten parallel sind, müssen ihre steigungen gleich sein.
aber   jetzt hab ich das problem dass ich die tangenten nicht berechnen kann.
also muss es etwas mit der 1. ableitung sein.
muss ich die ersten ableitungen gleichsetzen  ?
wenn ja aus welchem grund?

dank im voraus
lg

        
Bezug
parallele tangenten: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Fr 14.08.2009
Autor: fred97


> In welchem Punkt haben die Graphen von f und g parallele
> tangenten?
>  [mm]f(x)=3/8x^{2}, g(x)=4x-1/5x^{2}[/mm]
>  also damit die tangenten
> parallel sind, müssen ihre steigungen gleich sein.
>  aber   jetzt hab ich das problem dass ich die tangenten
> nicht berechnen kann.
>  also muss es etwas mit der 1. ableitung sein.
>  muss ich die ersten ableitungen gleichsetzen  ?

Genau. Mach Dir Klar, warum

FRED




>  wenn ja aus welchem grund?
>  
> dank im voraus
>  lg  


Bezug
                
Bezug
parallele tangenten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:38 Fr 14.08.2009
Autor: mef

also

die ersten ableitungen gleichgesetzt
f´(x)=g´(x)

[mm] \bruch{6}{8}x=\bruch{-2}{5}x+4 [/mm]

[mm] x=\bruch{80}{23} [/mm]

ich kann es mir selbst schlecht klar machen, aber ich versuche es:
an der stell [mm] x=\bruch{80}{23} [/mm] schneiden sich die ertsen ableitungsgrapphen von f und g.
das heißt dass sie an dieser stelle auch die selbe steigung haben müssen, und das würde bedeuten dass sie dort deshalb parallel sind??????aber irgendwie sinnlos denn wenn sie sich doch dort schneiden macht es keinen sinn mehr dies als parallelität aufzufasssen??????oder

Bezug
                        
Bezug
parallele tangenten: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Fr 14.08.2009
Autor: schachuzipus

Hallo mef,

> also
>  
> die ersten ableitungen gleichgesetzt
>  f´(x)=g´(x)
>  
> [mm]\bruch{6}{8}x=\bruch{-2}{5}x+4[/mm]
>  
> [mm]x=\bruch{80}{23}[/mm] [ok]
>  
> ich kann es mir selbst schlecht klar machen, aber ich
> versuche es:
>  an der stell [mm]x=\bruch{80}{23}[/mm] schneiden sich die ertsen
> ableitungsgrapphen von f und g.
>  das heißt dass sie an dieser stelle auch die selbe
> steigung haben müssen, [ok] und das würde bedeuten dass sie
> dort deshalb parallel sind??????

Beide Graphen haben in dem berechneten Punkt dieselbe Steigung, das bedeutet für die jeweiligen Tangenten von f und g in diesem Punkt, dass sie ebenfalls dieselbe Steigung in diesem Punkt haben, und zwar eben genau die Steigung, die f und g dort haben.

Damit sind die Tangenten an f und g an der Stelle [mm] $x=\frac{80}{23}$ [/mm] parallel

> aber irgendwie sinnlos denn
> wenn sie sich doch dort schneiden macht es keinen sinn mehr
> dies als parallelität aufzufasssen??????oder

Es schneiden sich die Ableitungskurven in dem berechneten Punkt, f und g schneiden sich dort natürlich nicht, sie haben an der Stelle [mm] $x=\frac{80}{23}$ [/mm] dieselbe Steigung!

Das hast du doch oben selber weitgehend richtig zusammenargumentiert


Lade dir mal das kostenlose Programm []Funkyplot herunter und lasse dir die Graphen der Funktionen und die Ableitungsgraphen zeichnen, dann wird's ersichtlich(er)


LG

schachuzipus

Bezug
                                
Bezug
parallele tangenten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:52 Fr 14.08.2009
Autor: mef

vielen dank an alle:))))))))))))))
und auch für den tipp mit dem programm;))

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de