www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - parallele und orthogonale Vek.
parallele und orthogonale Vek. < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

parallele und orthogonale Vek.: Tipp, Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:48 Di 10.02.2015
Autor: Lucas95

Aufgabe
Gegeben sind die Vektoren [mm] \vec{u}=[-1,-2,a] [/mm] und [mm] \vec{v}=[-1,a,a] [/mm] in Abhängigkeit von der reellen Zahl a!
Bestimmen Sie jeweils die konkreten Zahlenwerte für a1 und a2 mit a1 Element von R so, dass die Vektoren parallel sind und mit a2 Element R so, dass die Vektoren orthogonal zueinander sind.

Liebe community,
a1 müsste -2 sein, da [-1,-2,a]=k*[-1,a,a] der Ansatz ist.
So rechnet man dann
(1) -1=k*-1 --> k=1
(2) -2=1*a --> a=-2
(3) -2=1*-2 w.A.
--> a1=-2, für k kommt jeweils derselbe Wert heraus --> die Vektoren sind parallel.

a2 müsste eins sein, denn hier muss das Skalarprodukt der beiden Vektoren sein --> (-1*-1)+(-2*1)+1*1 = 1-2+1 = 0
--> Skalarprodukt = 0 --> Vektoren orthogonal.

        
Bezug
parallele und orthogonale Vek.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Di 10.02.2015
Autor: fred97


> Gegeben sind die Vektoren [mm]\vec{u}=[-1,-2,a][/mm] und
> [mm]\vec{v}=[-1,a,a][/mm] in Abhängigkeit von der reellen Zahl a!
>  Bestimmen Sie jeweils die konkreten Zahlenwerte für a1
> und a2 mit a1 Element von R so, dass die Vektoren parallel
> sind und mit a2 Element R so, dass die Vektoren orthogonal
> zueinander sind.
>  Liebe community,
> a1 müsste -2 sein, da [-1,-2,a]=k*[-1,a,a] der Ansatz ist.
> So rechnet man dann
> (1) -1=k*-1 --> k=1
>  (2) -2=1*a --> a=-2

>  (3) -2=1*-2 w.A.
>  --> a1=-2, für k kommt jeweils derselbe Wert heraus -->

> die Vektoren sind parallel.

Das ist O.K.


>  
> a2 müsste eins sein, denn hier muss das Skalarprodukt der
> beiden Vektoren sein --> (-1*-1)+(-2*1)+1*1 = 1-2+1 = 0
> --> Skalarprodukt = 0 --> Vektoren orthogonal.  

Du hast gezeigt: wenn  a=1 ist, so sind die die Vektoren [mm] \vec{u} [/mm] und [mm] \vec{v} [/mm] zueinander orthogonal .

Dieser Aufgabenteil verlangt aber etwas mehr:

zeige auch noch:  wenn  [mm] \vec{u} [/mm] und [mm] \vec{v} [/mm] zueinander orthogonal  sind, so muss a=1 sein.

FRED


Bezug
                
Bezug
parallele und orthogonale Vek.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Di 10.02.2015
Autor: Lucas95

Es steht da
(-1*-1)+(-2*a)+(a*a)=0
also
-1-2*a+a² = 0
man kann deutlich erkennen, dass a nur 1 sein kann. ?

Bezug
                        
Bezug
parallele und orthogonale Vek.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 Di 10.02.2015
Autor: fred97


> Es steht da
> (-1*-1)+(-2*a)+(a*a)=0
>  also
> -1-2*a+a² = 0
>  man kann deutlich erkennen, dass a nur 1 sein kann. ?

Ummmpff ! ?  Ich erkenne das nicht, und schon gar nicht deutlich, denn:

   a=1 ist aber keine Lösung der Gleichung [mm] $-1-2a+a^2=0$ [/mm]   ( es ist [mm] -1-2+1^2=-2). [/mm]

Was nun ?  Ganz einfach: Du hast das Skalaprodukt falsch berechnet. Richtig ist:


    [mm] $1-2a+a^2$. [/mm]

Wegen  [mm] $1-2a+a^2=(1-a)^2$ [/mm] kann man nun deutlicher (und deutlicher gehts nicht mehr) erkennen:


   [mm] $1-2a+a^2=(1-a)^2=0 \gdw [/mm] a=1$

Gruß von

  Fred Deutlich




Bezug
                                
Bezug
parallele und orthogonale Vek.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:43 Di 10.02.2015
Autor: abakus


> > Es steht da
> > (-1*-1)+(-2*a)+(a*a)=0
> > also
> > -1-2*a+a² = 0
> > man kann deutlich erkennen, dass a nur 1 sein kann. ?

>

> Ummmpff ! ? Ich erkenne das nicht, und schon gar nicht
> deutlich, denn:

>

> a=1 ist aber keine Lösung der Gleichung [mm]-1-2a+a^2=0[/mm] ( es
> ist [mm]-1-2+1^2=-2).[/mm]

>

> Was nun ? Ganz einfach: Du hast das Skalaprodukt falsch
> berechnet. Richtig ist:

>
>

> [mm]1-2a+a^2[/mm].

>

> Wegen [mm]1-2a+a^2=(1-a)^2[/mm] kann man nun deutlicher (und
> deutlicher gehts nicht mehr) erkennen:

>
>

> [mm]1-2a+a^2=(1-a)^2=0 \gdw a=1[/mm]

>

> Gruß von

>

> Fred Deutlich

>
>
>
Womit wieder einmal gezeigt wäre, dass " Deutlich" den Wert 97 annimmt (und ich dachte bisher, die Antwort auf alles sei 42.)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de