param.abh. uneigent. Integrale < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] f:[0,\infty) \to \IR [/mm] eine stetige Funktion. Es gebe [mm] t_0 \in \IR [/mm] derart, dass das Integral
F(t):= [mm] \integral_{0}^{\infty} e^{-tx}f(x)dx
[/mm]
für [mm] t=t_0 [/mm] konvergiert. Zeigen Sie, dass dieses Integral dann auch für alle [mm] t>t_0 [/mm] konvergiert und die Funktion F(t) für [mm] t>t_0 [/mm] unendlich oft differenzierbar ist. |
Hallo!
Obige Aufgabe stammt aus einer Aufgabensammlung zum Analysis-Vordiplom und gehört zum Thema parameterabhängige Integrale. Mein bisheriger Ansatz ist im wesentlichen der, die Aussage für eine endliche obere Integrationsgrenze R zu beweisen. Dieses, im folgenden mit G(t) bezeichnete Integral, konvergiert dann sicherlich für alle [mm] t>t_0 [/mm] und erfüllt die Bedingungen zur Vertauschung von Integration und Differentation, also
[mm] \bruch{dG}{dt}(t)= \integral_{0}^{R}\bruch{d}{dt} e^{-tx}f(x)dx= [/mm] - [mm] \integral_{0}^{R} e^{-tx}xf(x)dx
[/mm]
und man sieht, dass dies auch für alle weiteren Ableitungen funktioniert.
Leider gelingt es mir nicht, diese Aussagen für [mm] R\to\infty [/mm] zu beweisen. Mit welchem Argument kann ich diese Aussagen für den uneigentlichen Fall beweisen? Vielen Dank!
ch habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt
http://www.studivz.net/group_forum_comments.php?data[group_ids]=4XD&data[thread_ids]=Tf0VLV
http://www.studivz.net/group_forum_comments.php?data[group_ids]=knR3n&data[thread_ids]=fTTVLV
|
|
|
|
Hallo.
Gehen wir mal für einen Moment davon aus, daß es sich um ein Lebesgue-Integral handelt. Dann haben wir, da $f$ stetig und [mm] $e^{-tx}f(x)$ [/mm] somit sicher meßbar, daß [mm] $e^{-t\cdot}f(\cdot)\in L^1\gdw e^{-t\cdot}|f(\cdot)|\in L^1$ [/mm] (*). Nun wissen wir, daß es [mm] $t_0\in\IR$ [/mm] gibt mit [mm] $g:=e^{-t_0\cdot}f(\cdot)\in L^1$. [/mm] Weiter ist aber sicher für alle [mm] $x\in\IR,t>t_0$:
[/mm]
[mm] $e^{-tx}|f(x)|t_0$, [/mm] und es konvergiert [mm] $g_n^t(x):=|g^t(x)|\cdot 1_{[0,n)}(x)$ [/mm] monoton gegen [mm] $|g^t(x)|$, [/mm] es folgt wegen (*), daß auch [mm] $g^t\in L^1$.
[/mm]
Ganz ähnlich kannst Du nun auch die [mm] $C^\infty$-Eigenschaft [/mm] des Integrals folgern...
Für das Riemann-Integral muß ich noch ein bißchen überlegen...
Gruß,
Christian
|
|
|
|