www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - partiell diffbar, nicht total
partiell diffbar, nicht total < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partiell diffbar, nicht total: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Fr 02.07.2010
Autor: notinX

Aufgabe
Sei [mm] $f:\mathbb{R}^2\to\mathbb{R}$ [/mm] mit
[mm] $f(x,y)=\begin{cases} \frac{x^{2}y}{x^{4}+y^{2}} & (x,y)\neq(0,0)\\ 0 & (x,y)=(0,0)\end{cases}$ [/mm]
zeigen Sie, dass f bei (0,0) partiell differenzierbar ist, f aber nicht total differenzierbar ist.

Hallo,

ich zeige zuerst, dass f im Nullpunkt partiell diffbar ist:
[mm] $\lim\limits_{h\to0}\frac{f(h,0)-f(0,0)}{h}=\lim\limits _{h\to0}\frac{\frac{0}{h^{4}}-0}{h}=0$ [/mm]
und
[mm] $\lim\limits _{h\to0}\frac{f(0,h)-f(0,0)}{h}=\lim\limits _{h\to0}\frac{\frac{0}{h^{2}}-0}{h}=0$ [/mm]
Die partiellen Ableitungen [mm] $\frac{\partial f}{\partial x}(0,0)$ [/mm] und [mm] $\frac{\partial f}{\partial y}(0,0)$ [/mm] existieren also und sind auch noch gleich, also ist f im Nullpunkt partiell differenzierbar.
(Wenn die Limites verschiedene Werte hätten, wäre f aber trotzdem part. diffbar, oder?)

Wenn ich mich nicht täusche folgt aus totaler Diffbarkeit die Stetigkeit, also müsste es genügen zu zeigen, dass f im Ursprung nicht stetig ist um zu zeigen, dass f nicht total diffbar ist.
Dazu wähle ich eine Folge mit [mm] $a_n=(1/n,1/n^2)$, [/mm] also [mm] $a_n\to0$ [/mm]
Damit gilt:
[mm] $\lim\limits_{n\to\infty}f(a_{n})=\frac{\frac{1}{n^{2}}\cdot\frac{1}{n^{2}}}{\frac{1}{n^{4}}+\frac{1}{n^{4}}}=\frac{\frac{1}{n^{4}}}{\frac{2}{n^{4}}}=\frac{1}{2}\neq0$ [/mm]
also ist f nicht stetig bei (0,0) und somit auch nicht total diffbar.
Kann man das so machen?

        
Bezug
partiell diffbar, nicht total: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 Fr 02.07.2010
Autor: Gonozal_IX

Huhu,

alles prima begründet [ok]
Eine Kleinigkeit: Du solltest vllt. noch erwähnen, warum die partiellen Ableitungen generell existieren, also für $(x,y) [mm] \not= [/mm] (0,0)$.
Das hast du mit keiner Silbe erwähnt, solltest du der Vollständigkeit halber aber tun.


Um deine Frage zu beantworten:

> (Wenn die Limites verschiedene Werte hätten, wäre f aber trotzdem part. diffbar, oder?)

Klar, dann würde die partielle Ableitung nach x nur andere Werte haben als die nach y. Hat sie hier im Allgemeinen auch, nur im Nullpunkt sind sie halt gerade zufällig identisch.

MFG,
Gono.



Bezug
                
Bezug
partiell diffbar, nicht total: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:50 Fr 02.07.2010
Autor: notinX


>  Eine Kleinigkeit: Du solltest vllt. noch erwähnen, warum
> die partiellen Ableitungen generell existieren, also für
> [mm](x,y) \not= (0,0)[/mm].
>  Das hast du mit keiner Silbe erwähnt,
> solltest du der Vollständigkeit halber aber tun.

Ok, als Komposition partiell diffbarer Funktionen ist auch f partiell diffbar.
Aber ist das denn nötig? Es war doch nur gefragt wie es im Nullpuknt aussieht, das habe ich gezeigt und was außenrum passiert war ja nicht gefragt, oder?


Bezug
                        
Bezug
partiell diffbar, nicht total: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Fr 02.07.2010
Autor: Gonozal_IX

Ah stimmt, da stand ja gar nix von "zeigen dass f partiell diffbar", sondern nur in (0,0).

Ok, dann vergiß meinen Einwand ;-)

MFG,
Gono.

Bezug
                                
Bezug
partiell diffbar, nicht total: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:05 Fr 02.07.2010
Autor: notinX

Ok :-)
Vielen Dank fürs Drüberkuken.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de