www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - partiell differenzieren
partiell differenzieren < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partiell differenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 So 10.06.2007
Autor: myo

Aufgabe
Zeigen Sie, dass die Funktion
f: [mm] \IR^2 [/mm] -> [mm] \IR, [/mm] f(x,y) := [mm] {\frac {xy \left( {x}^{2}-{y}^{2} \right) }{{x}^{2}+{y}^{2}}} [/mm] für (x,y)!=(0,0), f(0,0)=0 überall zweimal partiell differenzierbar ist, aber f_xy(0,0)!=f_yx(0,0) gilt! Wieso stellt dies keinen Widerspruch zum Satz von Schwarz dar?

Ich versteh gerade garnicht so recht was oder wie ich hier was machen soll..

also die partiellen Ableitungen sind ja:
[mm] f_x {\frac {y \left( {x}^{4}-{y}^{4}+4\,{x}^{2}{y}^{2} \right) }{ \left( { x}^{2}+{y}^{2} \right) ^{2}}} [/mm]
[mm] f_y {\frac {x \left( {x}^{4}-{y}^{4}-4\,{x}^{2}{y}^{2} \right) }{ \left( { x}^{2}+{y}^{2} \right) ^{2}}} [/mm]
f_xx [mm] -4\,{\frac {x{y}^{3} \left( {x}^{2}-3\,{y}^{2} \right) }{ \left( {x}^{ 2}+{y}^{2} \right) ^{3}}} [/mm]
f_xy [mm] {\frac {{x}^{6}+9\,{x}^{4}{y}^{2}-9\,{x}^{2}{y}^{4}-{y}^{6}}{ \left( { x}^{2}+{y}^{2} \right) ^{3}}} [/mm]
f_yx [mm] {\frac {{x}^{6}+9\,{x}^{4}{y}^{2}-9\,{x}^{2}{y}^{4}-{y}^{6}}{ \left( { x}^{2}+{y}^{2} \right) ^{3}}} [/mm]
f_yy [mm] -4\,{\frac {{x}^{3}y \left( 3\,{x}^{2}-{y}^{2} \right) }{ \left( {x}^{ 2}+{y}^{2} \right) ^{3}}} [/mm]

Aber wie nun weiter? Wie zeige ich genau das etwas überall zweimal partiell diffbar ist? Mit gegen einen Grenzwert laufen lassen?

Und die andere Frage ist wieso ist f_xy(0,0)!=f_xy(0,0)? Wenn ich da die Werte einsetze kommt doch dasselbe raus oder wie ist das genau zu verstehen?
f_xy und f_yx sind ja dasselbe, das besagt ja auch der Satz von Schwarz, dass nämlich die gemischten partiellen Ableitungen gleich sind (f_xixj=f_xjxi).

Würde mich freuen, wenn mir dabei mal jemand auf die Sprünge helfen könnte.. Ich glaub ich steh hier gerade voll auf dem Schlauch.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
partiell differenzieren: Tipp
Status: (Antwort) fertig Status 
Datum: 13:54 Mo 11.06.2007
Autor: martzo

Hi Myo,

du hast die partiellen Ableitungen sehr schön ausgerechnet, aber eben nur für den Bereich außerhalb von (0,0), und da ist natürlich alles wunderbar stetig differenzierbar und da gilt auch der Satz von Schwartz.

Aber überleg doch mal, wie die partiellen Ableitungen im Punkt (0,0) aussehen. Dazu musst du ganz elementar den Grenzwert des Differentialquotienten im Punkt (0,0) bestimmen. Wenn Du so die zweiten partiellen Ableitungen ausgerechnet hast, wirst Du wahrscheinlich sehen können (ich weiß es nicht, ich habe es nicht ausprobiert), dass sie nicht stetig sind, und deshalb der Satz von Schwartz nicht gilt (der gilt nämlich nur für STETIG differenzierbare Funktionen...)

Ist nur eine Idee, jetzt musst Du selber rechnen. Viel Spaß!

Martzo



Bezug
                
Bezug
partiell differenzieren: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:15 Mo 11.06.2007
Autor: martzo

Sorry, natürlich nicht den Grenzwert des Differentialquotienten, sondern den des DIFFERENZENQUOTIENTEN.
Martzo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de