www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Graphentheorie" - perfektes Matching Polytop
perfektes Matching Polytop < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

perfektes Matching Polytop: Beweis
Status: (Frage) beantwortet Status 
Datum: 20:56 Mi 13.06.2012
Autor: Balendilin

Hallo,

ich möchte folgendes zeigen:

gegeben ist ein bipartiter Graph G=(V,E). Das perfekte Matching-Polytop ist gegeben als
[mm] P=conv\{x_M \in\IR^{|E|} : M \text{ist perfektes Matching von} G \} [/mm]
dabei ist [mm] x_M [/mm] der Vektor, der an der i-ten Stelle eine 1 stehen hat, wenn [mm] e_i\in [/mm] E eine Kante des perfekten Matchings M ist und sonst nur Nullen ( [mm] x_M [/mm] hat also so viele Einser, wie das perfekte Matching groß ist )

Ich soll nun zeigen, dass dieses Polytop das selbe ist wie das folgende:

[mm] P=\{x\in\IR^{|E|}: x_e\geq0 \forall e\in E, \sum_{e \text{ mit } v\in e} x_e=1 \forall v\in V\} [/mm]

dabei ist [mm] x_e [/mm] die e-te Komponente des Vektors x.


An Beispielen konnte ich das verifizieren. Und mein erster Gedanke war, dass das irgendwas mit der Eigenschaft zu tun haben muss, dass in einem bipartiten Graph die Kardinalität des maximalen Matchings genau so groß ist wie die Kardinatlität der minimalen Knotenüberdeckung. Immerhin ist im ersten Fall die Summe der Einträge von [mm] x_M [/mm] genau die Kardinalität des perfekten Matchings. Das hat aber irgendwie zu nichts geführt. Und auch der Versuch, die Ecken des zweiten Polytops zu berechnen, hat nicht geklappt... kann mir deswegen bitte irgendjemand helfen...
Danke :-)

        
Bezug
perfektes Matching Polytop: Antwort
Status: (Antwort) fertig Status 
Datum: 09:27 Fr 15.06.2012
Autor: Stoecki


> Hallo,
>  
> ich möchte folgendes zeigen:
>  
> gegeben ist ein bipartiter Graph G=(V,E). Das perfekte
> Matching-Polytop ist gegeben als
> [mm]P=conv\{x_M \in\IR^{|E|} : M \text{ist perfektes Matching von} G \}[/mm]
>  
> dabei ist [mm]x_M[/mm] der Vektor, der an der i-ten Stelle eine 1
> stehen hat, wenn [mm]e_i\in[/mm] E eine Kante des perfekten
> Matchings M ist und sonst nur Nullen ( [mm]x_M[/mm] hat also so
> viele Einser, wie das perfekte Matching groß ist )
>  
> Ich soll nun zeigen, dass dieses Polytop das selbe ist wie
> das folgende:
>  
> [mm]P=\{x\in\IR^{|E|}: x_e\geq0 \forall e\in E, \sum_{e \text{ mit } v\in e} x_e=1 \forall v\in V\}[/mm]
>  
> dabei ist [mm]x_e[/mm] die e-te Komponente des Vektors x.
>  
>
> An Beispielen konnte ich das verifizieren. Und mein erster
> Gedanke war, dass das irgendwas mit der Eigenschaft zu tun
> haben muss, dass in einem bipartiten Graph die
> Kardinalität des maximalen Matchings genau so groß ist
> wie die Kardinatlität der minimalen Knotenüberdeckung.
> Immerhin ist im ersten Fall die Summe der Einträge von [mm]x_M[/mm]
> genau die Kardinalität des perfekten Matchings. Das hat
> aber irgendwie zu nichts geführt. Und auch der Versuch,
> die Ecken des zweiten Polytops zu berechnen, hat nicht
> geklappt... kann mir deswegen bitte irgendjemand helfen...
>  Danke :-)

Zunächst einmal stimmt die aussage nur, wenn man auch ganzzahligkeit fordert. auf den ersten blick glaube ich nicht, dass die matrix, die hier entsteht tootal unimodular ist, daher wirds wahrscheinlich sogar ganzzahlige ecken geben.

ansonsten überlege dir mal folgendes:
die summe aller kanten, die an einem knoten liegen (bzw deren bewertung) ist 1. diese 1 entspricht genau einer gematchten kante. hilft dir das weiter?

Gruß Bernhard

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de