www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - poisoon verteilung
poisoon verteilung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

poisoon verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Sa 26.06.2004
Autor: blutdaemon

moin kann mir mal jemand genau erklären wie ich auf die gleichung der poisson verteilung beweistechnisch komme, wofür und warum jede variable und zahl genau an dieser stelle steht und wofür man diese verteilung nochmal genau braucht. ich habe alle bücher studiert aber dort konnte ich mir diese Fragen leider nicht beantworten.
mfg

        
Bezug
poisoon verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 So 27.06.2004
Autor: Mephi

Die Poisoon-Verteilung ist eine besondere Form der Binominial-Verteilung.
Sie wird angewendet für besonders unwahrscheinliche Elementarereignisse
also wenn viele Versuche mit geringer Erfolgswahrscheinlichkeit herschen
z.B.: das ein bestimmter kunde in einer großen Telefonzentrale anruft, oder die Anzahl der Hausbrände in ganz Deutschland für ein Jahr

man geht also von der Binominialverteilung aus:

[mm] B_{n,\bruch{\lambda}{n}}(\{k \})= \vektor{n \\ k} \left(\bruch{ \lambda}{n}\right)^{k} (1-\bruch{\lambda}{n})^{n-k} [/mm]

= [mm] \bruch{n!}{(n-k)!k!} \bruch{\lambda^k}{n^k} (1-\bruch{\lambda}{n})^n (1-\bruch{\lambda}{n})^{-k} [/mm]
= [mm] \bruch{\lambda^k}{k!}\bruch{n(n-1)*\dots*(n-k+1)}{ \underbrace{n*\dots*n}_{k-mal}}(1-\bruch{\lambda}{n})^n (1-\bruch{\lambda}{n})^{-k} [/mm]
[mm] \to_{n \to \infty} \bruch{\lambda^k}{k!} [/mm] * 1 * [mm] e^{-\lambda} [/mm] *1
= [mm] \bruch{\lambda^k}{k!}e^{-\lambda} [/mm]
[mm] \Box [/mm]

Bezug
                
Bezug
poisoon verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Mo 28.06.2004
Autor: blutdaemon

danke aber ich will noch mal wissen wie ich auf die anfangsfunktion komme da ich dort nichts von einer binominalverteilung erkennen kann.


Bezug
                        
Bezug
poisoon verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:11 Di 29.06.2004
Autor: Brigitte

Hallo!

> danke aber ich will noch mal wissen wie ich auf die
> anfangsfunktion komme da ich dort nichts von einer
> binominalverteilung erkennen kann.

Vielleicht schaust Du noch mal ins letzte Posting. Ich habe zwei kleine Tippfehlerchen korrigiert. Man sollte nun erkennen können, dass es sich um eine Binomialverteilung mit Parameter $n$ und [mm] $p=\frac{\lambda}{n}$ [/mm] handelt.

Gruß
Brigitte

Bezug
                                
Bezug
poisoon verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:27 Di 29.06.2004
Autor: Mephi

Danke für die Korrektur
Finger wieder n bissl zu fix gewesen ;P

Bezug
                                        
Bezug
poisoon verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Do 01.07.2004
Autor: blutdaemon

also ja das ist ja schön danke schon mal aber wie komme ich auf das hoch k und so ich verstehe leider nicht wie ich auf die erste gleichung komme.
ich bitte nochmal auf rückmeldung
gruss blutdaemon

Bezug
                                                
Bezug
poisoon verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Fr 02.07.2004
Autor: Brigitte

Hallo nochmal!

Also ist Dein Problem, dass Du nicht weißt, was die Binomialverteilung ist?

Eine Zufallsvariable $X$, die binomialverteilt mit Parametern $n$ und $p$ ist (kurz: [mm] $X\sim [/mm] B(n,p)$) beschreibt die Anzahl von Erfolgen in $n$ Versuchen ein- und desselben Zufallsexperiments, bei dem die Erfolgswahrscheinlichkeit jeweils $p$ ist. Die Versuche sind dabei stochastisch unabhängig.
Beispiel: zehnfacher Wurf einer fairen Münze; $X$ zählt, wie oft Kopf kommt. Dann ist [mm] $X\sim B(10,\frac{1}{2})$. [/mm]

Die Verteilung einer $B(n,p)$-verteilten Zufallsvariable lautet

[mm]P(X=k)={n \choose k} p^k (1-p)^{n-k}[/mm].

Das kann man sich aus oben angegebenen Voraussetzungen wie folgt herleiten:
Die Wahrscheinlichkeit dafür, dass unter $n$ Versuchen genau $k$ erfolgreich sind, und zwar bestimmen wir sie zunächst mal für den Fall, dass genau die ersten $k$ Versuche erfolgfreich sind, beträgt [mm] $p^k(1-p)^{n-k}$, [/mm] weil gleichzeitig die letzten $n-k$ Versuche nicht erfolgreich sind. Berücksichtigt man nun noch, dass ja nicht vorgegeben ist, an welcher Stelle unter den $n$ Versuchen die $k$ erfolgreichen liegen, erhält man als Faktor den Binomialkoeffizienten ${n [mm] \choose [/mm] k}$, das ist nämlich die Anzahl an Möglichkeiten, aus einer $n$-elementigen  Menge eine $k$-elementige Teilmenge auszuwählen.

Jetzt alles klar?

Viele Grüße
Brigitte

Bezug
                                                        
Bezug
poisoon verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:43 Fr 02.07.2004
Autor: blutdaemon

danke das habe ich nun verstanden und kann dies auch gut einsetzen.
herzlcihen danke blutdaemon

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de