www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - pos. Definitheit mit G-Schmidt
pos. Definitheit mit G-Schmidt < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

pos. Definitheit mit G-Schmidt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:48 Mo 01.09.2008
Autor: pelzig

Hallo,
Habe irgendwie malgehört, dass man mit dem Gramschmidt-Algorithmus irgendwie feststellen kann ob eine Matrix positiv Definit ist. Weiß jemand wie das geht? Am Besten mit Beweis(skizze) :-)

Gruß, Robert

        
Bezug
pos. Definitheit mit G-Schmidt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:11 Mo 01.09.2008
Autor: felixf

Hallo Robert

>  Habe irgendwie malgehört, dass man mit dem
> Gramschmidt-Algorithmus irgendwie feststellen kann ob eine
> Matrix positiv Definit ist. Weiß jemand wie das geht? Am
> Besten mit Beweis(skizze) :-)

Davon habe ich noch nie gehoert, allerdings wuerde mich das auch interessieren, weshalb ich mal eine Nachricht schreibe damit dieser Thread in meiner Beteiligt-Liste auftaucht ;-)

LG Felix


Bezug
                
Bezug
pos. Definitheit mit G-Schmidt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:36 Mo 01.09.2008
Autor: Merle23

Wenn man anhand einer Bilinearform, die nicht positiv definit ist, eine Norm definieren will, dann hätte man das Problem, dass man entweder die Wurzel aus was Negativem ziehen müsste oder die Norm Null wäre (da ja die Bedingung [mm] > 0[/mm] nicht mehr da ist).

Und da man beim Gram-Schmidt-Verfahren zwischendurch auch mal Normieren muss, könnte es also daran scheitern.
Also man rechnet hierbei das Verfahren mit der neuen symmetrischen Bilinearform durch, nicht mit dem kanonischen Skalarprodukt.

Die Frage ist nur noch, ob es wirklich jedes Mal scheitert (also mit beliebiger Anfangsbasis), d.h. ob man sagen, dass es genau dann mit jeder beliebigen Startbasis scheitert, wenn die Bilinearform nicht positiv definit ist.

Der Trägheitssatz von Sylvester gebe uns vielleicht eine Antwort, denn er sagt ja, dass die Dimensionen der Unterräume [mm]V_+[/mm] und [mm] V_0 [/mm] invariant sind in der Zerlegung [mm]V = V_+ \oplus V_- \oplus V_0[/mm], man also jedes Mal beim Gram-Schmidt-Verfahren auf so einen Vektor stoßen müsste (hier bin ich mir nicht sicher, ist diese letzte Schlussfolgerung richtig? Tritt deswegen bei beliebig gewählten Basen dieser Fall trotzdem ein?).

Bezug
                        
Bezug
pos. Definitheit mit G-Schmidt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:32 Di 02.09.2008
Autor: felixf

Hallo

> Wenn man anhand einer Bilinearform, die nicht positiv
> definit ist, eine Norm definieren will, dann hätte man das
> Problem, dass man entweder die Wurzel aus was Negativem
> ziehen müsste oder die Norm Null wäre (da ja die Bedingung
> [mm] > 0[/mm] nicht mehr da ist).
>  
> Und da man beim Gram-Schmidt-Verfahren zwischendurch auch
> mal Normieren muss, könnte es also daran scheitern.
>  Also man rechnet hierbei das Verfahren mit der neuen
> symmetrischen Bilinearform durch, nicht mit dem kanonischen
> Skalarprodukt.
>  
> Die Frage ist nur noch, ob es wirklich jedes Mal scheitert
> (also mit beliebiger Anfangsbasis), d.h. ob man sagen, dass
> es genau dann mit jeder beliebigen Startbasis scheitert,
> wenn die Bilinearform nicht positiv definit ist.

Da habe ich Zweifel. Ich habe mal $A = [mm] \pmat{ 1 & 0 \\ 0 & -1 }$ [/mm] gewaehlt, dann ist $b(v, w) = [mm] v_1 w_1 [/mm] - [mm] v_2 w_2$ [/mm] die zugehoerige Bilinearform; dass diese nicht positiv definit ist sieht man sofort ;-)

Wenn man jetzt die Basis [mm] $\pmat{ 1 \\ lambda }, \pmat{ 1 \\ \mu }$ [/mm] mit [mm] $|\lambda| [/mm] < 1$ und [mm] $\mu [/mm] < [mm] \lambda$ [/mm] waehlt und Gram-Schmidt bzgl. $b$ auf diese Basis anwendet, sollte man (wenn ich mich nicht verrechnet hab) eine bzgl. $b$ orthogonalisierte Basis bekommen, ohne dass der Fall $b(v, v) [mm] \le [/mm] 0$ auftritt.

Insofern weiss ich grad nicht ob dieser Ansatz weiterhilft... Eventuell muss man spezielle Basen waehlen? Oder das Kriterium hilft nur zu widerlegen, dass etwas positiv definit ist?

LG Felix


Bezug
                                
Bezug
pos. Definitheit mit G-Schmidt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:28 Di 02.09.2008
Autor: Merle23

Also da hätteste dir mal echt ein besseres Beispiel überlegen können *grins*
Ich hab 'ne geschlagene halbe Stunde daran rumgerechnet, nur um es in eine Form zu zwingen, die ich in Mathematica reinwerfen kann.
Aber ich kann jetzt (sofern ich mich nicht auch verrechnet hab - und das könnte sogar wirklich passiert sein bei dieser ewigen Rechnung ^^) dein Gegenbeispiel bestätigen (also insofern, dass es mögliche Wahlen von [mm] \lambda [/mm] und [mm] \mu [/mm] gibt, sodass es trotzdem geht - einfach die Bedingung [mm]\mu < \lambda[/mm] reicht nicht aus).

Ich weiss jetzt auch wieso mein Argument mit dem Trägheitssatz nix bringt... denn die Basen müssen ja nicht unbedingt in einem der Räume liegen (genau das passiert nämlich in deinem Gegenbeispiel).

Also sagen wir es so: Wenn man beim Rechnen auf etwas nicht-berechenbares stößt, dann kann man sich sicher sein, dass man eine nicht positiv definite Form hat, ansonsten... tja, ansonsten kann man erstmal nix anderes sagen ^^

Bezug
                
Bezug
pos. Definitheit mit G-Schmidt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:12 Mi 03.09.2008
Autor: pelzig

Vielleicht hat es was mit der Darstellungsmatrix des Basiswechsels von der Ausgangsbasis auf die orthonormalisierte zu tun... spätestens Freitag weiß ich hoffentlich mehr :-)

Bezug
        
Bezug
pos. Definitheit mit G-Schmidt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:22 Mi 03.09.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de