positiv definit < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei A eine quadratische Matrix. Zeigen Sie, dass [mm] A^{T} [/mm] A symmetrisch ist und für
die zugehörige quadratische Form <x, [mm] A^{T} [/mm] Ax> [mm] \ge [/mm] 0 gilt. (Die Eigenwerte [mm] {\lambda}_i [/mm] von
[mm] A^{T} [/mm] A sind somit nichtnegativ. Man nennt [mm] {\lambda}_i [/mm] Singulärwerte von A.) |
Hallo
Versuche mich schon eine Weile an der Aufgabe. Symmetrie kann man ja erkennen, wenn man [mm] A^{T} [/mm] A anschreibt:
[mm] A^{T} [/mm] A =
[mm] \pmat{
{a_{11}}^2 + \ldots + {a_{1n}}^2 & \cdots & a_{11} a_{n1} + \ldots + \ldots a_{1n} a_{nn}
\\
\vdots & \ddots & \vdots
\\
a_{n1} a_{11} + \ldots + \ldots a_{nn} a_{1n} & \cdots & {a_{n1}}^2 + \ldots + {a_{nn}}^2
}
[/mm]
Warum die quadratische Form <x, [mm] A^{T} [/mm] Ax> [mm] \ge [/mm] 0 sein sollte, kann ich aber leider nicht erkennen.
Ich habe mal angeschrieben:
<x, [mm] A^{T} [/mm] Ax> =
[mm] {x_1}^2({a_{11}}^2 [/mm] + [mm] \ldots [/mm] + [mm] {a_{1n}}^2) [/mm] + [mm] \ldots [/mm] + [mm] {x_n}^2({a_{n1}}^2 [/mm] + [mm] \ldots [/mm] + [mm] {a_{nn}}^2) [/mm] +
[mm] 2[x_1 x_2 (a_{11}a_{21} [/mm] + [mm] \ldots [/mm] + [mm] a_{1n}a_{2n}) [/mm] + [mm] \ldots [/mm] + [mm] x_1 x_n (a_{11}a_{n1} [/mm] + [mm] \ldots [/mm] + [mm] a_{1n}a_{nn})] [/mm] +
[mm] 2[x_2 x_3 (a_{21}a_{31} [/mm] + [mm] \ldots [/mm] + [mm] a_{2n}a_{3n}) [/mm] + [mm] \ldots [/mm] + [mm] x_2 x_n (a_{21}a_{n1} [/mm] + [mm] \ldots [/mm] + [mm] a_{2n}a_{nn})] [/mm] +
[mm] \ldots [/mm] + [mm] \ldots
[/mm]
[mm] 2[x_{n-1} x_n (a_{{n-1}1}a_{n1} [/mm] + [mm] \ldots [/mm] + [mm] a_{{n-1}n}a_{nn})]
[/mm]
Ich hoffe, ich habe mich beim Anschreiben nicht vertan. Kann mir einer weiterhelfen; warum sollte der obige Ausdruck immer garantiert [mm] \ge [/mm] 0 sein, bzw. warum sollten die Eigenwerte immer positiv sein?
Danke und Gruß,
Martin
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:51 Fr 29.06.2018 | Autor: | fred97 |
Es geht viel(!) kürzer. A ist also eine reelle $n [mm] \times [/mm] n$ - Matrix und ,ich gehe mal davon aus, dass $< [mm] \cdot, \cdot>$ [/mm] das Standardskalarprodukt auf [mm] \IR^n [/mm] ist. Für die euklidische Norm $|| [mm] \cdot||_2 [/mm] $ auf [mm] \IR^n [/mm] gilt dann [mm] $=||x||_2^2.$
[/mm]
Sei $B:=A^TA$. Dann ist
[mm] $B^T=A^T(A^T)^T=A^TA=B$, [/mm] damit ist B symmetrisch.
(Beachte: [mm] $(MN)^T=N^TM^T$.)
[/mm]
Weiter ist
$<x, [mm] A^{T} Ax>==||Ax||_2^2 \ge [/mm] 0$
Fertig !
|
|
|
|