www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - positiv definitheit
positiv definitheit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

positiv definitheit: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:40 Mo 05.06.2006
Autor: Arnbert

Hallo brauche mal hilfe bei folgendem beweis:Also B ist aus M(mxn,R) und A =  [mm] \pmat{ E_{m} & B \\ B^{t} & E_{n}} [/mm]
Wie kann ich folgern dass aus A ist positiv definit folgt, dass  [mm] E_{n} [/mm] - [mm] B^{t}*B [/mm] ist positiv definit?
Hoffe mir kann wer zeigen wie man das hier macht...
danke mikke


        
Bezug
positiv definitheit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Mo 05.06.2006
Autor: AgentLie

Eine Matrix [mm] (a_{ij})_{i,j\in{1,\ldots,n}} [/mm] ist genau dann positiv definit, wenn jede Teilmatrix [mm] (a_{ij})_{i,j\in{1,\ldots,k}} [/mm] für [mm] k=1,\ldots [/mm] n eine positive Determinante hat.

Edit: Hilft hier glaube ich doch nicht...

Bezug
                
Bezug
positiv definitheit: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 08:16 Di 06.06.2006
Autor: Arnbert

Nicht?wie kann ich hier dann zum beweis kommmen?
gruß arnbert

Bezug
                        
Bezug
positiv definitheit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Di 06.06.2006
Autor: mathiash

Hallo und guten Tag,

es ist ja eine symmetrische Matrix positiv definit genau dann, wenn alle Eigenwerte der Matrix positiv sind.

Probieren wir es damit:

(1) Wenn [mm] \lambda [/mm] ein Eigenwert von [mm] E_n-B^TB [/mm] ist, so ist [mm] 1-\lambda [/mm] Eigenwert von B^TB (durch Hinschreiben der Eigenwert-Eigenschaft).

(2) Betrachten wir Eigenwerte [mm] \lambda [/mm] von A:

[mm] A\cdot \vektor{x\\y} =\vektor{\lambda x\\ \lambda y} [/mm]    - wir rechnen die linke Seite aus:

[mm] \vektor{x+By\\ B^Tx+y}=\vektor{\lambda x\\ \lambda y}\:\:\: (\star) [/mm]

das ergibt zwei Gleichungen:

[mm] \lambda [/mm] x = x+By

[mm] \lambda [/mm] y= B^Tx+y

Lös nun eine der beiden nach y auf und setz das in die andere ein, dann vergleiche das Resultat mit  [mm] (\star). [/mm]

Viel Erfolg,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de