www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - potenzreihe
potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:05 Do 21.02.2008
Autor: lotusbluete

Aufgabe
a)Entwickeln Sie [mm] f(x)=\bruch{1}{\wurzel{1-(ax)²}} [/mm] und g(x)=1+bsinh2x in Potenzreihen ( jeweils bis [mm] a_{6}x^{6} [/mm] )
b) Bestimmen Sie a und b so, dass die Kurve in der Nähe des Koordinatenursprungs möglichst gut übereinstimmen, d.h. die Potzenreihenentwicklung des Fehlers (f(x)-g(x)) mit einer möglichst hohen Potenz von x beginnt.
Wie lautet das erste von Null verschiedene Glied der Potenzreihe des Fehlers?

ich bin leider auch bei dieser Aufgabe überfordert. Vielleicht hilft mir diede auch die andere von mir gestellte Frage zu verstehen.

        
Bezug
potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Do 21.02.2008
Autor: Event_Horizon

Hallo!

Das Problem ist hier ganz ähnlich wie in deiner anderen Aufgabe.

Es gibt zwei Möglichkeiten:

Die erste ist, du findest bekannte Potenzreihen, und bastelst dir daraus deine eigene zusammen.

Das ginge z.B. so:

Bekannt ist, daß [mm] e^z=1+z+\frac{1}{2!}z^2+\frac{1}{3!}z^3+... [/mm]

Jetzt ist [mm] \sinh(x)=\frac{e^{+x}+e^{-x}}{2} [/mm]

Jetzt setzt du die Reihe der e-Funktion ein. Denk dran, links ist  z=2x, rechts z=-2x


Danach bringst du da wieder Ordnung rein, sodaß da [mm] f(x)=\Box+\Box*x+\Box*x^2+... [/mm] steht. Das ist deine Potenzreihe.

Ähnliches läßt sich sicher auch mit g(x) machen.

Der Rest sollte dann einfach sein. Du mußt die Differenz der beiden Reihen bilden (und wieder ordnen). Versuche dann, a und b so zu bestimmen, daß die ersten Summanden der Reihe weg fallen!



Allerdings, wenn du keine fertigen Potenzreihen findest, kommst du um eine Taylorentwicklung nicht herum. Denn Potenzreihen sind letztendlich nix anderes als bereits ausgerechnete Taylorentwicklungen.



Aber versuch das damit erstmal.





Bezug
                
Bezug
potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:35 Mi 12.03.2008
Autor: lotusbluete

Ich habe
[mm] f(x)=1+\bruch{1}{2}*ax+\bruch{3}{8}a^2x^2+\bruch{15}{48}a^6x6 [/mm]
[mm] g(x)=1+b+2bx+2bx²+\bruch{8}{6}bx^3+\bruch{2}{3}bx^4+\bruch{4}{15}bx^5+\bruch{4}{45}bx^6 [/mm]

ist es bis hierhin richtig?

Bezug
                        
Bezug
potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Mi 12.03.2008
Autor: leduart

Hallo
Beide Reihen sind falsch.
Wie hast du die gerechnet?
zu f, etwa f'(0)=0 nur das hab ich nachgerechnet, um zu sehen, dass deine Reihe falsch ist.
zu g wenn man die Reihen für [mm] e^x [/mm] und [mm] e^{-x} [/mm] subtrahiert müssen doch alle glieder mit geraden Exponenten wegfallen?
(wenn man sie addiert alle ungeraden, also lags auch nicht an EHs Vorzeichenfehler.)
Gruss leduart

Bezug
                                
Bezug
potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 Mi 12.03.2008
Autor: lotusbluete

zu a) habe ich aus der Formelsammlung
[mm] (1-x)^{-\bruch{1}{2}}=1+\bruch{1}{2}x+\bruch{3}{8}x2^+\bruch{15}{48}x^3+... [/mm] und da habe ich für x=ax eingesetzt.
Aber ich muss ja [mm] (ax)^2 [/mm] einsetzen. Dann müsste da [mm] 1+\bruch{1}{2}a^2x^2+\bruch{3}{8}a^4x^4 [/mm] rauskommen, oder?

Bezug
                                        
Bezug
potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:34 Mi 12.03.2008
Autor: lotusbluete

bei b) ist mir auch ein kleiner Fehler unterlaufen, das müsste [mm] g(x)=1+b*sinh^2(x) [/mm] heißen.
Da habe ich das durch den cosh ersetzt und nun raus
[mm] 1-\bruch{b}{2}+\bruch{b}{4}*[4x-\bruch{16*x^3}{6}+\bruch{64x^5}{120}] [/mm]

Bezug
                                        
Bezug
potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Mi 12.03.2008
Autor: leduart

Hallo
Ich hab nur bis [mm] 1/2(ax)^2 [/mm] nachgesehen, das stimmt. Aber du solltest doch wohl sowas nicht nur mit Formelsammlung, sondern auch selbst können. Aber wenns da drin steht, wirds wohl stimmen.
Gruss leduart

Bezug
                                                
Bezug
potenzreihe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:16 Mi 12.03.2008
Autor: lotusbluete

Aber wenn das stimmt, kommt bei f(x)-g(x) nichts sinnvolles raus. Da die beiden unterschiedliche potenzen haben.

Bezug
                                                        
Bezug
potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:04 Mi 12.03.2008
Autor: lotusbluete

Vllt sind aber auch g(x) nicht?

Bezug
                                                        
Bezug
potenzreihe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 14.03.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
potenzreihe: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 12:58 Mi 12.03.2008
Autor: leduart

Hallo EH
Da hat sich ein Vorzeichenfehler eingeschlichen :
[mm] sinhx=\bruch{e^x-e^{-x}}{2} [/mm]
Gruss leduart

Bezug
                        
Bezug
potenzreihe: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 15:43 Mi 12.03.2008
Autor: Event_Horizon

Stimmt mal wieder.

So hab ich auch meine Abi-Klausur geschrieben. Lösungsweg aufgestellt, ausgerechnet, dann hat meine Lösung auf mirakulösen Wegen zu meinen Nachbarn gefunden, und kurz darauf kam dann die debuggte Version zurück...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de