www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - prim,irreduzibel
prim,irreduzibel < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

prim,irreduzibel: Erklärung
Status: (Frage) beantwortet Status 
Datum: 08:41 So 13.03.2011
Autor: Kayle

Hallo,

bin gerade in Vorbereitung auf mein Vordiplom. Leider hab ich an einigen Stellen gemerkt, dass ich noch ein paar Lücken habe.

1.
Was zum Beispiel is der Unterschied zwischen prim und irreduzibel, wenn ich mich bei beispielsweise bei Gruppen befinde? Ich hab die Definitionen angeschaut und auch verstanden, aber bei einigen Definitionen im Skript kommt dann oft der Wortlaut "dann wenn" auf.. es ist also nicht immer das gleiche, steht aber in Beziehung. Kann mir das vielleicht Jemand genau erklären?

2.
Bezüglich Thema Restklassen. Das hab ich verstanden, aber ich weiß nicht, wie ich M/U richtig ausspreche. Heißt das "M modulo U"? Denn eine Klasse davon wäre ja K:={m+U} und M/U sind ja dann alle diese Klassen. Kann mir vielleicht auch hier weitergeholfen werden?


Das wars erstmal :)

Viele Grüße
Kayle

        
Bezug
prim,irreduzibel: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 So 13.03.2011
Autor: Lippel

Morgen,

> 1.
>  Was zum Beispiel is der Unterschied zwischen prim und
> irreduzibel, wenn ich mich bei beispielsweise bei Gruppen
> befinde? Ich hab die Definitionen angeschaut und auch
> verstanden, aber bei einigen Definitionen im Skript kommt
> dann oft der Wortlaut "dann wenn" auf.. es ist also nicht
> immer das gleiche, steht aber in Beziehung. Kann mir das
> vielleicht Jemand genau erklären?

Ich kenne die Begriffe irreduzibel und prim nur im Zusammenhang von Integritätsringen. Hier sind sie aber tatsächlich nicht immer äquivalent.
Ist [mm] $R\:$ [/mm] ein Integritätsring und $p [mm] \in [/mm] R$, so heißt [mm] $p\:$ [/mm] irreduzibel, wenn für jede Zerlegung $p=xy$ gilt, dass [mm] $x\.$ [/mm] oder [mm] $y\:$ [/mm] eine Einheit in R ist.
[mm] $p\:$ [/mm] heißt hingegen prim, wenn aus $p [mm] \:|\: [/mm] xy$ immer $p [mm] \:|\:x$ [/mm] oder $p [mm] \:|\: [/mm] y$ folgt.
Ein Primelement ist immer irreduzibel.
Betrachten wir beispielsweise $6 [mm] \in \IZ[\sqrt{-5}]$: [/mm] Es gilt $6=2 [mm] \cdot [/mm] 3 = [mm] (1+\sqrt{-5})(1-\sqrt{-5})$ [/mm]
Es ist zum beispiel 2 nicht prim, denn aus $2 [mm] \:|\: (1+\sqrt{-5})(1-\sqrt{-5})$ [/mm] folgt hier nicht: $2 [mm] \:|\: (1+\sqrt{-5})$ [/mm] oder $2 [mm] \:|\: (1-\sqrt{-5})$. [/mm] 2 ist jedoch irreduzibel.
Das heißt in allgemeinen Integritätsringen gibt es Elemente, die irreduzibel sind, aber nicht prim. Es lohnt sich, sich dieses Gegenbeispiel zu merken, ist ein Standardbeispiel.
In Hauptidealringen, also z.B. auch in [mm] $\IZ$ [/mm] oder dem Polynomring $K[X]$ über einem Körper K, sind die Begriffe dann aber äquivalent. Also, sobald du dich in Hauptidealringen befindest, musst du nicht mehr unterscheiden.
  

> 2.
>  Bezüglich Thema Restklassen. Das hab ich verstanden, aber
> ich weiß nicht, wie ich M/U richtig ausspreche. Heißt das
> "M modulo U"? Denn eine Klasse davon wäre ja K:={m+U} und
> M/U sind ja dann alle diese Klassen.

Ja, so kenne ich das auch.

LG Lippel



Bezug
                
Bezug
prim,irreduzibel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:48 So 13.03.2011
Autor: Kayle

Hey,

vielen Dank für die schnelle Antwort, jetzt ist alles klar.

Gruß
Kayle

Bezug
        
Bezug
prim,irreduzibel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:39 So 13.03.2011
Autor: felixf

Moin!

> 2.
>  Bezüglich Thema Restklassen. Das hab ich verstanden, aber
> ich weiß nicht, wie ich M/U richtig ausspreche. Heißt das
> "M modulo U"? Denn eine Klasse davon wäre ja [mm] $K:=\{m+U\}$ [/mm] und

Wenn du die geschweiften Klammern weglaesst, stimmt es.

> M/U sind ja dann alle diese Klassen. Kann mir vielleicht
> auch hier weitergeholfen werden?

Die Aussprache "M modulo U" ist denk ich die verbreiteste. Bei konkreten Faellen wie [mm] $\IZ/7\IZ$ [/mm] oder [mm] $\IZ/(7)$ [/mm] sagt man auch gerne mal "Zett modulo 7" (anstelle "Zett modulo 7 Zett" oder "Zett modulo dem von 7 erzeugten Ideal") oder sogar nur "Zett 7".

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de