www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 5-7" - produkt null satz
produkt null satz < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

produkt null satz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Mo 23.10.2006
Autor: maresi1

Aufgabe
3x² - 8 = 0        lösung: (x=-1.633) und (x=1.633)

x² (-x²+4) = 0   lösung: (x=0) ,(x=2) und (x=2)


hallo!

es geht um die produkt null satz regel : also beim ersten Bsp hab ich keine ahnung, weil man muss doch immer zB 3x²= 0   bzw. 8=0 also da versteh ich nicht was ich mit der 8 mach!! weil da kein x ist??

und 2bsp: warum kommt da 2 mal x= 2 raus? ?

danke euch!!
lGruß von maresi!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
produkt null satz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Mo 23.10.2006
Autor: Teufel

Hallo!

1.) weißt ich auch nicht, was das soll.

2.)

x²(-x²+4)=0
Nunja, es gibt die Nullstellen [mm] x_1=0, x_2=2 [/mm] und [mm] x_3=-2. [/mm]



Bezug
        
Bezug
produkt null satz: so geht's
Status: (Antwort) fehlerhaft Status 
Datum: 17:23 Mo 23.10.2006
Autor: informix

Hallo maresi1 und [willkommenmr],
> 3x² - 8 = 0        lösung: (x=-1.633) und (x=1.633)

Das hat mit obiger Regel nicht wirklich was zu tun, man könnte sie aber dennoch anwenden:
[mm] $3x^2-8 [/mm] = 3 [mm] (x+\wurzel{\frac{8}{3}})(x-\wurzel{\frac{8}{3}}) [/mm] = 0$

Ich würde eher so rechnen: $ [mm] 3x^2 [/mm] = 8 [mm] \gdw x^2 [/mm] = [mm] \frac{8}{3} \gdw x_{1,2} [/mm] = [mm] \pm \wurzel{\frac{8}{3}}$ [/mm]
ist aber dasselbe Ergebnis wie oben.

> x² (-x²+4) = 0   lösung: (x=0) ,(x=2) und (x=2)

Hier ist's klarer:
[mm] $x^2 (-x^2+4) [/mm] =  x*x*(x+2)(-x+2) = 0$
vier Faktoren [mm] \Rightarrow [/mm] 4 Lösungen, davon je zwei doppelt.

>  
>
> hallo!
>  
> es geht um die produkt null satz regel : also beim ersten
> Bsp hab ich keine ahnung, weil man muss doch immer zB 3x²=
> 0   bzw. 8=0 also da versteh ich nicht was ich mit der 8
> mach!! weil da kein x ist??
>  
> und 2bsp: warum kommt da 2 mal x= 2 raus? ?
>  

Jetzt klar(er)?

Gruß informix

Bezug
                
Bezug
produkt null satz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:52 Mo 23.10.2006
Autor: maresi1

aha,... danke  für die begrüssung und die hilfe jaes ist jetzt klar! sehr nett von euch! schöne grüße.maresi

Bezug
                
Bezug
produkt null satz: Korrekturmitteilung
Status: (Korrektur) Korrekturmitteilung Status 
Datum: 19:25 Mo 23.10.2006
Autor: Faithless

hallo zusammen
> > x² (-x²+4) = 0   lösung: (x=0) ,(x=2) und (x=2)
>  
> Hier ist's klarer:
>  [mm]x^2 (-x^2+4) = x*x*(x+2)(-x+2) = 0[/mm]
>  vier Faktoren
> [mm]\Rightarrow[/mm] 4 Lösungen, davon je zwei doppelt.

das ist nich ganz richtig
in der letzen klammer muss man noch -1 ausklammern, sodass
(-1)*x*x*(x+2)(x-2) = 0
übrig bleibt.
dann lauten die lösungen -2, 0, 0 und 2

Bezug
                        
Bezug
produkt null satz: geht beides
Status: (Korrektur) Korrekturmitteilung Status 
Datum: 23:06 Mo 23.10.2006
Autor: informix

Hallo Faithless,

> hallo zusammen
>  > > x² (-x²+4) = 0   lösung: (x=0) ,(x=2) und (x=2)

>  >  
> > Hier ist's klarer:
>  >  [mm]x^2 (-x^2+4) = x*x*(x+2)(-x+2) = 0[/mm]
>  >  vier Faktoren
> > [mm]\Rightarrow[/mm] 4 Lösungen, davon je zwei doppelt.
>  
> das ist nich ganz richtig

stimmt, nur die Null kommt als doppelte Nullstelle vor: x=0 (doppelt), x = [mm] \pm2 [/mm]

>  in der letzen klammer muss man noch -1 ausklammern,

das ist nicht zwingend, auch $x*x*(x+2)(-x+2) = 0$ führt zum Ziel, weil (-x+2)=0 [mm] \gdw [/mm] x=2 ist.

> sodass
>  (-1)*x*x*(x+2)(x-2) = 0
> übrig bleibt.
>  dann lauten die lösungen -2, 0, 0 und 2

Danke für den Hinweis.

Gruß informix

Bezug
        
Bezug
produkt null satz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Mo 23.10.2006
Autor: Hate

Hier haben sich einige Fehler eingeschlichen.Wie lauten die zahlen richtig?
3T 13H 13Z 14E

Bezug
                
Bezug
produkt null satz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Mo 23.10.2006
Autor: angela.h.b.


> Hier haben sich einige Fehler eingeschlichen.Wie lauten die
> zahlen richtig?
>  3T 13H 13Z 14E

Hallo,

[willkommenmr].

Was verstehst Du denn nicht?

Für die Lösung der Aufgabe mußt Du bedenken, daß
14 E iner= 1 Z ehner 4 E sind,
Für die anderen entsprechend.

Oder Du löst es so :
3T 13H 13Z 14E
=3T+13H+13Z+14E
= [mm] 3\dot [/mm] 1000 [mm] +13\dot [/mm] 100 + [mm] 13\dot [/mm] 10 + [mm] 14\dot [/mm] 1=...

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de