www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - quadratische Gleichungen
quadratische Gleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quadratische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 Mo 04.08.2014
Autor: Valkyrion

Aufgabe
Lösen Sie folgende quadratische Gleichung:
[mm] 4x^{2}+8x+16=25 [/mm]

Maple sowie auch ich durch eigene Rechnung mit pq sowie abc- Formel komme auf -2,8 und 0,8. Die Lösung soll aber 0,5 und -4,5 sein. Laut Buchlösung wird die linke Seite zuerst mithilfe der ersten Binomischen Formel umgewandelt in [mm] (2x+4)^{2}. [/mm] Wieso hat die Gleichung in der Potenzschreibweise eine ganz andere Lösung?

        
Bezug
quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Mo 04.08.2014
Autor: Diophant

Hallo,

> Lösen Sie folgende quadratische Gleichung:
> [mm]4x^{2}+8x+16=25[/mm]
> Maple sowie auch ich durch eigene Rechnung mit pq sowie
> abc- Formel komme auf -2,8 und 0,8. Die Lösung soll aber
> 0,5 und -4,5 sein. Laut Buchlösung wird die linke Seite
> zuerst mithilfe der ersten Binomischen Formel umgewandelt
> in [mm](2x+4)^{2}.[/mm]

Das ist falsch!

> Wieso hat die Gleichung in der

> Potenzschreibweise eine ganz andere Lösung?

Deine Frage ist etwas verdreht. Das ist doch egal, wie man das löst, es muss immer das gleiche herauskommen. Per quadratischer Ergänzung erhält man

[mm] 4x^2+8x+16=25 [/mm]

[mm] 4x^2+8x+4=13 [/mm]

[mm] 4*(x+1)^2=13 [/mm]

[mm] x+1=\pm\bruch{1}{2}\wurzel{13} [/mm]

Also

[mm] x_1=-1-\bruch{1}{2}\wurzel{13}\approx{-2.80} [/mm]

[mm] x_2=-1+\bruch{1}{2}\wurzel{13}\approx{0.80} [/mm]

Womit auch ganz nebenbei dieser Unsinn, in der Algebra Dezimalzahlen zu verwenden, aufs deutlichste sichtbar wird.


Gruß, Diophant

PS: eine solche Gleichung mit MATLAB, dann 1+1 in Zukunft per TR? ;-)

 

Bezug
                
Bezug
quadratische Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 Mo 04.08.2014
Autor: schachuzipus

Hallo zusammen,

> Hallo,

>

> > Lösen Sie folgende quadratische Gleichung:
> > [mm]4x^{2}+8x+16=25[/mm]
> > Maple sowie auch ich durch eigene Rechnung mit pq sowie
> > abc- Formel komme auf -2,8 und 0,8. Die Lösung soll
> aber
> > 0,5 und -4,5 sein. Laut Buchlösung wird die linke
> Seite
> > zuerst mithilfe der ersten Binomischen Formel
> umgewandelt
> > in [mm](2x+4)^{2}.[/mm]

>

> Das ist falsch!

Ich vermute einen Übertragungsfehler ...

Die Gleichung lautet bestimmt [mm]4x^2+\red{16}x+16=25[/mm]

> PS: eine solche Gleichung mit MATLAB, dann 1+1 in Zukunft
> per TR? ;-)

Wieso Zukunft? Ich habe einen Nachhilfeschüler, der [mm]\frac{4}{2}[/mm] mit dem TR vereinfacht; sehr weit von der 1+1 -Rechnung ist das nicht entfernt ...

Und das ist ihm nicht abzugewöhnen ;-)

Gruß

schachuzipus 

Bezug
                        
Bezug
quadratische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:45 Mo 04.08.2014
Autor: Valkyrion

Wieso falsch?

Wieso darf man die linke Seite nicht in [mm] (2x+4)^{2} [/mm] umwandeln?
Bzw. wieso gibt mir Maple für die Potenzversion eine andere Lösung als für die [mm] 4x^{2} [/mm] Version?


Bezug
                                
Bezug
quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Mo 04.08.2014
Autor: Diophant

Hallo,

> Wieso falsch?

>

> Wieso darf man die linke Seite nicht in [mm](2x+4)^{2}[/mm]
> umwandeln?
> Bzw. wieso gibt mir Maple für die Potenzversion eine
> andere Lösung als für die [mm]4x^{2}[/mm] Version?

laut Grundgesetz ist es erlaubt. Nur mathematisch halt nicht...

[mm] (2x+4)^2=4x^2+16x+16\ne{4x^2+8x+16} [/mm]

Das ist heutzutage Stoff so ca. Klasse 7-8 ...

Anders sähe es aus, wenn die Gleichung so lautet, wie von schachuzipus vermutet. Nur du hast sie halt so angegeben, wie du sie offensichtlich auch gerechnet hast. Man fragt sich darüber hinaus, weshalb die gegebenen Antworten nicht mit mehr Sorgfalt durchgegangen werden...


Gruß, Diophant

Bezug
                                        
Bezug
quadratische Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:30 Mo 04.08.2014
Autor: Valkyrion

ja, danke Diophant sehr geile Antwort (mit dem Grundgesetz; werd ich mir merken) Und natürlich gehört da ne 16 statt ner 8 hin. Oh Mann!

Bezug
                
Bezug
quadratische Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:37 Mo 04.08.2014
Autor: abakus


> Hallo,

>

> > Lösen Sie folgende quadratische Gleichung:
> > [mm]4x^{2}+8x+16=25[/mm]
> > Maple sowie auch ich durch eigene Rechnung mit pq sowie
> > abc- Formel komme auf -2,8 und 0,8. Die Lösung soll
> aber
> > 0,5 und -4,5 sein. Laut Buchlösung wird die linke
> Seite
> > zuerst mithilfe der ersten Binomischen Formel
> umgewandelt
> > in [mm](2x+4)^{2}.[/mm]

>

> Das ist falsch!

>

> > Wieso hat die Gleichung in der
> > Potenzschreibweise eine ganz andere Lösung?

>

> Deine Frage ist etwas verdreht. Das ist doch egal, wie man
> das löst, es muss immer das gleiche herauskommen. Per
> quadratischer Ergänzung erhält man

>

> [mm]4x^2+8x+16=25[/mm]

>

> [mm]4x^2+8x+4=13[/mm]

>

> [mm]4*(x+1)^2=13[/mm]

>

> [mm]x+1=\pm\bruch{1}{2}\wurzel{13}[/mm]

>

> Also

>

> [mm]x_1=-1-\bruch{1}{2}\wurzel{13}\approx{-2.80}[/mm]

>

> [mm]x_2=-1+\bruch{1}{2}\wurzel{13}\approx{0.80}[/mm]

>

> Womit auch ganz nebenbei dieser Unsinn, in der Algebra
> Dezimalzahlen zu verwenden, aufs deutlichste sichtbar
> wird.

>
>

> Gruß, Diophant

>

> PS: eine solche Gleichung mit MATLAB, dann 1+1 in Zukunft
> per TR? ;-)

>

>  

... und wenn man mit den 4 "Lösungskandidaten" 0.5, -4.5, 0.8 und -2.8 die Probe macht stellt man fest, dass keine dieser vier Zahlen eine Lösung sein kann.
Gruß Abakus

Bezug
                        
Bezug
quadratische Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:57 Mo 04.08.2014
Autor: Marcel

Hi,

> > Hallo,
>  >
>  > > Lösen Sie folgende quadratische Gleichung:

>  > > [mm]4x^{2}+8x+16=25[/mm]

>  ... und wenn man mit den 4 "Lösungskandidaten" 0.5, -4.5,
> 0.8 und -2.8 die Probe macht stellt man fest, dass keine
> dieser vier Zahlen eine Lösung sein kann.

naja, bspw. für $x=0.8$ erhält man genau [mm] $24.96\,,$ [/mm] das ist "quasi-25". ;-)

Aber natürlich hat Diophant nicht nur Näherungs-, sondern *gänzlich
korrekte* Lösungen berechnet.

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de