www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - quadratische Matrizen
quadratische Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quadratische Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:52 So 18.06.2006
Autor: still86

Aufgabe
(a) Es sei K ein Körper. Zeigen Sie, dass die Menge [mm] K^{n×n} [/mm] der quadratischen Matrizen mit Einträgen aus K bzgl. der Matrizenaddition und der Matrizenmultiplikation einen Ring bildet.

(b) Ist dieser Ring kommutativ ? Hat er ein Einselement ? Ist er ein Körper ?

Hallo, vielleicht könnt ihr mir bei der Aufgabe helfen. Wie kann ich zeigen das die Matrizenmultiplikation bei quadratischen Matrizen abelsch ist?

Vielen Dank für eure Hilfe. Thomas

        
Bezug
quadratische Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 So 18.06.2006
Autor: mushroom

Hallo Thomas,

also du sollst zunächst einmal zeigen, daß [mm] $(K^{n\times n},+,\cdot)$ [/mm] ein Ring ist. Hast du dieses denn bereits getan?

Bei Teilaufgabe b) könnte man sich überlegen, ob ein Gegenbeispiel existiert um eine Aussage zu widerlagen. Deine Fragestellung zielt nämlich genau darauf ab.

Gruß
Markus

Bezug
                
Bezug
quadratische Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:35 Mo 19.06.2006
Autor: still86

Nein, leider noch nicht... auch hier fehlt mir der Ansatz, wie ich die Axiome bei [mm] (K^{nxn},+,*) [/mm] zeigen soll. Könnt ihr mir da helfen? Vor allem hab ich Probleme beim Distributivgesetzt.

Könnte man z.B.  [mm] \pmat{ 0 & 0 \\ 1 & 0 } [/mm] *  [mm] \pmat{ 0 & 1 \\ 0 & 0 } [/mm] als Gegenbeispiel nehmen? Da hier AB [mm] \not= [/mm] BA ist.

Bezug
                        
Bezug
quadratische Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:27 Mo 19.06.2006
Autor: mushroom

Also es ist doch zunächst zu zeigen, daß [mm] $(K^{ n\times n}, [/mm] +)$ eine abelsche Gruppe ist. Versuche es mal und poste hier deine Ergebnisse. Desweiteren mußt du für einen Ring zeigen, daß er bzgl. der Multiplikation assoziativ ist und es müssen die Distributivgesetze gelten, also $A(B+C)= AB+AC$ und $(A+B)C = AC+BC$.
Nutze dazu einfach die Schreibweise als Summe für die Multiplikation bzw. Addition von zwei Matrizen, also für die Multiplikation [mm] $(A\cdot B)_{ij} [/mm] = [mm] \sum_{l=1}^n a_{il}b_{lj}$ [/mm] und für die Addition [mm] $(A+B)_{ij} [/mm] = [mm] a_{ij}+b_{ij}$ [/mm] mit $i,j = [mm] 1,\ldots,n$. [/mm]

Um zu zeigen, daß der Ring nicht kommutativ ist, also bzgl. [mm] $"\cdot"$ [/mm] die Matrizen im allgemeinen nicht kommutieren, reicht genau dein Gegenbeispiel.

Gruß
Markus

Bezug
                        
Bezug
quadratische Matrizen: Spezialfall: n=1
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:42 Mo 19.06.2006
Autor: mushroom

Kann nicht erkennen, ob es die Aufgabenstellung erfordert, aber betrachte eventuell noch den Spezialfall für $n=1$. Dann bist du auf der sicheren Seite.

Gruß
Markus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de