quadratischen funktionen < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Hi ihr Mathe begeisterten ;),
in der schule haben wir graphen und sone quadratischen funktionen...
dort müssen wir die einzeichnen etc. z.B. f(x)=(x-1)²
da aber ein Vorfaktor f(x)=-1(x-2)² manchmal davor steht, die ich zwar irgendwie ohne mühe einzeichnen kann, weiß ich trotzdem nicht, wie man die "genaue" breite dieser linie einzeichnet.
D.H. ich suche eine erklärung, wie man die breite der linie einzeichnet =)
(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)
Ich habe euch mal ein besipiel als Bild hochgeladen =) Danke schon mal im Vorraus mfg Matze aus Hamburg
BILD: http://home.arcor.de/kessmat/quadratischefunktion.bmp
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:40 Sa 01.10.2005 | Autor: | Infinit |
Hallo Matze_10a,
wie Du selbst ja sagst, handelt es sich hierbei um einen Vorfaktor, d. h. dein ursprünglicher Ausdruck $ [mm] (x-2)^{2} [/mm] $ wird mit -1 malgenommen, das ist kein Summand, um den sich sonst die ganze Gleichung verschieben würde. Durch das Multiplizieren mit -1 spiegelst Du Deine ursprüngliche Kurve
$ f(x) = [mm] (x-2)^{2} [/mm] $ an der x-Achse, die Parabel öffnet sich nun nach unten hin.
Viele Grüße,
Infinit
|
|
|
|
|
Hey klar =) ich weiß, dass sie sich denn nach unten öffnet oder nicht, aber ich möchte ja eine genau breite von z.B. f(x)=-0,34(x-2)² oder ähnliches =).....
forum ist recht unübersichtlich..... komm nich richig damit zurecht...
|
|
|
|
|
Hallo!
> Hey klar =) ich weiß, dass sie sich denn nach unten öffnet
> oder nicht, aber ich möchte ja eine genau breite von z.B.
> f(x)=-0,34(x-2)² oder ähnliches =).....
Also, "Breite" ist hier eigentlich nicht das richtige Wort, denn die "Breite" wird ja noch oben hin (oder auch nach unten hin) immer größer. Aber ich denke, ich weiß, was du meinst.
Ich glaube, das kann man nicht so einfach ablesen, da muss man einfach ein paar Punkte berechnen. Durch den Vorfaktor weißt du aber schon, ob die Parabel nach oben oder unten geöffnet ist, und wie Loddar schon schreibt, weißt du auch, ob die Parabel schmaler oder breiter ist als die Normalparabel. Mehr kannst du den Zahlen nicht entnehmen, du musst ein paar Werte einsetzen. Am besten berechnest du den Scheitelpunkt (oder du liest ihn ab ) und dann setzt du Werte linkst und rechts davon ein, dann weißt du, wie's aussieht.
> forum ist recht unübersichtlich..... komm nich richig
> damit zurecht...
Na, dann mach doch mal einen Verbesserungsvorschlag.
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:52 Sa 01.10.2005 | Autor: | Loddar |
Hallo Matze,
!!
Noch eine kleine Ergänzung ...
Mir scheint, Dein Problem ist das Zeichnen der Parabel mit dem unterschiedlichem Faktor $a_$ bei $y \ = \ [mm] \red{a}*(x-x_S)^2 [/mm] + [mm] y_S$ [/mm] .
Dazu kann man sich folgendes merken:
$a \ = \ 1$ : es handelt sich um die Normalparabel, die lediglich um [mm] $x_S$ [/mm] Schritte nach rechts, sowie um [mm] $y_S$ [/mm] nach oben verschoben wurde.
Die Öffnung der Parabel zeigt wie bei der Normalparabel $y \ = \ [mm] x^2$ [/mm] nach oben.
$a \ = \ -1$ : wie oben, aber die Öffnung dieser Parabel zeigt nach unten.
$a \ > \ 1$ : Da $a_$ positiv, ist die Öffnung oben. Aber die Parabel ist nun viel schmaler (enger), da sie durch den größeren Wert von $a_$ nun auch steiler ist als die Normalparabel.
$0 \ < \ a \ < \ 1$ : Auch hier Öffnung nach oben, aber die Parabel ist breiter (also weiter geöffnet), da weniger steil als die Normalparabel.
Dasselbe gilt dann auch für negative $a_$-Werte, nur halt für nach unten geöffnete Parabeln.
War es das, was Du wissen wolltest?
Gruß
Loddar
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 21:40 Sa 01.10.2005 | Autor: | Matze_10a |
Sooo erstmal danke für die antworten =)
also das problem liegt ja nur an der "malweise"
Rechnen und so kann ich ja alles =9 kein problem.. auch mit den öffnungen nach unten...
nein, es gibt ja normalparabeln, und welche die breiter und schmaler(die öffnungen) sind...
|
|
|
|