www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - rechtwinklige Dreiecke
rechtwinklige Dreiecke < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rechtwinklige Dreiecke: Berechnung
Status: (Frage) beantwortet Status 
Datum: 20:58 So 26.03.2006
Autor: Blackpearl

Aufgabe
Gegeben ist ein würfel mit der Kantenlänge 5 cm. Wie groß ist der Winkel, den die Raumdiagonale des Würfels

a. mit einer Kante bildet;
b. mit der Diagonalen einer Seitenfläche bildet?

Ich komm mit der Aufgabe nicht klar könnt ihr mir helfen?



        
Bezug
rechtwinklige Dreiecke: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 So 26.03.2006
Autor: Walde

hi blackpearl,

ich weiss natürlich nicht, was ihr alles benutzen dürft, aber hier meine Tipps:

1.Errechne zunächst die Länge einer Seitendiagonalen mit dem Satz des Pythagoras (Kontrolle: [mm] \wurzel{50}) [/mm]
2. Errechne daraus die Länge der Raumdiagonalen. Wieder mit Pythagoras (Kontrolle: [mm] \wurzel{75}) [/mm]
3.Benutze die Beziehungen von Längen und Winkeln im rechtwinkligen Dreieck um die gesuchten Winkel zu bestimmen:
[mm] \bruch{Gegenkathete}{Hypothenuse}=Sinus [/mm] des Winkels
oder
[mm] \bruch{Ankathete}{Hypothenuse}=Cosinus [/mm] des Winkels
bzw. benutze, wenn du du einen Winkel hast, dass die Winkelsumme im Dreieck 180° beträgt.


Kontrolle:
Winkel zw. Raum-und Seitendiag.: 35,3°
Winkel zw. Raumdiag. und Kante: 54,7°                            

Alles verstanden?

Lg walde

Bezug
                
Bezug
rechtwinklige Dreiecke: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:17 Mo 27.03.2006
Autor: Blackpearl

Ich versteh das nicht ganz. Sorry.
Also.. 5 cm sind ja gegeben. Daraus kann ich was errechnen?

PS: Pythagoras war doch [mm]h^2 = a^2 + b^2[/mm] oder?

Bezug
                        
Bezug
rechtwinklige Dreiecke: etwas Geometrie
Status: (Antwort) fertig Status 
Datum: 14:30 Mo 27.03.2006
Autor: statler


> Ich versteh das nicht ganz. Sorry.
>  Also.. 5 cm sind ja gegeben. Daraus kann ich was
> errechnen?
>  
> PS: Pythagoras war doch [mm]h^2 = a^2 + b^2[/mm] oder?

Besser [mm] c^{2} [/mm] = [mm] a^{2} [/mm] + [mm] b^{2}, [/mm] weil h meistens für die Höhe steht.
Jetzt ist beim Würfel die Seitenfläche ein Quadrat, und die Diagonale macht daraus 2 kongruente rechtwinklige Dreiecke mit der Diagonalen als Hypotenuse. Die Würfelkanten sind die Katheten!

Und eine Raumdiagonale bildet mit einer angrenzenden Flächendiagonale und der Kante, die die beiden anderen Endpunkte miteinander verbindet,  ebenfalls ein rechtwinkliges Dreieck. Also wieder Pythagoras!

Zeichne mal einen (durchsichtigen) Würfel in Schrägansicht, dann müßte dir das alles klar werden.

Gruß aus HH-Harburg
Dieter


Bezug
                                
Bezug
rechtwinklige Dreiecke: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:43 Mo 27.03.2006
Autor: Blackpearl

Vielen dank. Solangsam versteh ich es.

Gruß

Blackpearl

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de