www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - rechwinkliges Schneiden von2Fu
rechwinkliges Schneiden von2Fu < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rechwinkliges Schneiden von2Fu: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:16 Mi 13.09.2006
Autor: keine-ahnung

Aufgabe
fa(x) = e^(ax)
ga(x) = ae^(-ax)
a>0
Für welchen Wert von a schneiden sich die Graphen von fa(x) und ga(x) rechtwinklig?

Ich habe überhaupt keine Ahnung was ich machen muss. Mir wurde zwar gesagt, dass ich Ableitungen brauch und für das Schneiden den negativen kerwert, aber habe damit nichts anfnagen können.
Kann mir jmd erklären wie ich diese Aufgabe lösen kann?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
rechwinkliges Schneiden von2Fu: Vorgehensweise
Status: (Antwort) fertig Status 
Datum: 16:24 Mi 13.09.2006
Autor: Loddar

Hallo keine-ahnung,

[willkommenmr] !!


Bestimme zunächst den Schnittpunkt dieser beiden Kurven, indem Du die Funktionsvorschriften gleichsetzt:

[mm] $f_a(x_S) [/mm] \ = \ [mm] g_a(x_S)$ $\gdw$ $e^{a*x} [/mm] \ = \ [mm] a*e^{-a*x}$ [/mm]

Nun  nach [mm] $x_S$ [/mm] umstellen (1. Schritt: multipliziere die Gleichung mit [mm] $e^{a*x}$ [/mm] ).


Anschließend die beiden Steigungswerte [mm] $f_a'(x_S)$ [/mm] und [mm] $g_a'(x_S)$ [/mm] an der ermittelten Stelle [mm] $x_S$ [/mm] bestimmen. Damit diese sich senkrecht schneiden, muss für die beiden Ableitungswerte gelten:

[mm] $m_f*m_g [/mm] \ = \ [mm] f_a'(x_S)*g_a'(x_S) [/mm] \ = \ -1$


Diese Gleichung kann man dann nach $a \ = \ ...$ umstellen ...


Wie lautet denn die Schnittstelle [mm] $x_S$ [/mm] ?


Gruß
Loddar


Bezug
                
Bezug
rechwinkliges Schneiden von2Fu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Mi 13.09.2006
Autor: keine-ahnung

also ich bin soweit gekommen das ich beim multipltiplizieren
x=lna/2a
raushabe. und danach hab ich fa'(x)*ga'(x)=-1 gemacht, aber ich komm nich mehr weiter bei
[mm] (laa+ax)(ln-a^2-ax)=-1 [/mm]
is das überhaupt richtig?

Bezug
                        
Bezug
rechwinkliges Schneiden von2Fu: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Mi 13.09.2006
Autor: Fulla

hi keine-ahnung!

der schnittpunkt ist richtig!

bei der gleichung mit den steigungen hast du dich vertan...

[mm]f'(x_s)*g'(x_s)=-1\quad\gdw\quad -a*e^{a*\bruch{\ln a}{2a}}*a^2*e^{-a*\bruch{\ln a}{2a}}=-1[/mm]

schau dir doch mal die e-funktionen an... was fällt dir da auf?


lieben gruß,
Fulla

Bezug
                                
Bezug
rechwinkliges Schneiden von2Fu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 Mi 13.09.2006
Autor: keine-ahnung

werden die beiden e's nich zu 1 wenn man sie multiplizieren würde ?
jedenfalls hab ich als ergebnis a=1 raus

Bezug
                                        
Bezug
rechwinkliges Schneiden von2Fu: Antwort
Status: (Antwort) fertig Status 
Datum: 04:18 Do 14.09.2006
Autor: Fulla

ja genau!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de