www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - reelle Funktion mit Parameter
reelle Funktion mit Parameter < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

reelle Funktion mit Parameter: Lösungsvorschlag
Status: (Frage) beantwortet Status 
Datum: 18:10 Mo 17.05.2010
Autor: kcler

Aufgabe
Hallo ;-)
1.0 Gegeben ist die reelle Funktion:
fk(x)= -0,5x³+0,5kx²+2x-2k

1.1 Zeigen sie rechnerisch, dass der Graph Gfk für jedes k zwei relative Extremstellen besitzt. (---hab ich gemacht---)

1.2 Berechnen sie die Steigung der Wendetangente des Graphen Gfk. (---erledigt---)
Bestätigen oder widerlegen sie anhand ihres ergebnisses die aussage: für k > 0 gilt: je größer der Wert von k, desto steiler die Tangente.
Eine ausführliche Rechnung ist nicht erforderlich

1.3 Weisen sie nach, dass die Tangente in Gfk im Schnittpunkt mit der y-Achse eine von k unabhängige Steigung hat.

1.4 Bestimmen sie denjenigen Wert von k, für den die Funktion an der Stelle x0 = 2 einen relativen Hochpunkt besitzt (kann ich)


Also erste und zweite Ableitung hab ich natürlich schon, genauso wie die Aufgabe 1.1 und bei der 1.2 hab ich die Wendetangente berechnet. Weiß allerdings nicht wie ich den Rest der 1.2 und die Aufgabe 1.3 lösen soll.

f´(x) =-1,5x²+kx+2
f´´(x)=-3x+k

#
# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
reelle Funktion mit Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Mo 17.05.2010
Autor: steppenhahn

Hallo!

> Hallo ;-)
>  1.0 Gegeben ist die reelle Funktion:
>  fk(x)= -0,5x³+0,5kx²+2x-2k
>  
> 1.1 Zeigen sie rechnerisch, dass der Graph Gfk für jedes k
> zwei relative Extremstellen besitzt. (---hab ich
> gemacht---)
>  
> 1.2 Berechnen sie die Steigung der Wendetangente des
> Graphen Gfk. (---erledigt---)
> Bestätigen oder widerlegen sie anhand ihres ergebnisses
> die aussage: für k > 0 gilt: je größer der Wert von k,
> desto steiler die Tangente.
>  Eine ausführliche Rechnung ist nicht erforderlich
>  
> 1.3 Weisen sie nach, dass die Tangente in Gfk im
> Schnittpunkt mit der y-Achse eine von k unabhängige
> Steigung hat.
>  
> 1.4 Bestimmen sie denjenigen Wert von k, für den die
> Funktion an der Stelle x0 = 2 einen relativen Hochpunkt
> besitzt (kann ich)
>  
>
> Also erste und zweite Ableitung hab ich natürlich schon,
> genauso wie die Aufgabe 1.1 und bei der 1.2 hab ich die
> Wendetangente berechnet. Weiß allerdings nicht wie ich den
> Rest der 1.2 und die Aufgabe 1.3 lösen soll.
>  
> f´(x) =-1,5x²+kx+2
>  f´´(x)=-3x+k

Die Ableitungen sind okay.
  
Zu 1.2.:
Du hast ja die Steigung der Wendetangente des Graphen Gfk berechnet.
Dieses ist ja ein Term, der nur von k abhängt. Du musst nun schauen, ob dieser Term größer wird, wenn k größer wird. (Wenn das der Fall ist, wird die Steigung größer, wenn k größer wird).

Zu 1.3.:
So wie ich das verstehe (Aufgabe ist etwas seltsam formuliert), sollst du die Steigung der Tangente im Punkt [mm] (0|f_{k}(0)) [/mm] berechnen (= Tangente im Schnittpunkt von [mm] f_{k} [/mm] mit der y-Achse).
Diese Steigung hängt nicht von k ab, das soll dabei rauskommen. Sie ist also zum Beispiel konstant "3" oder so.

Grüße,
Stefan


Bezug
                
Bezug
reelle Funktion mit Parameter: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:04 Mo 17.05.2010
Autor: kcler

Ok, vielen Dank für die schnelle und relativ unkomplizierte Antwort!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de