www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - reelle Lösungen von Gleichung
reelle Lösungen von Gleichung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

reelle Lösungen von Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:19 Do 16.02.2012
Autor: Harris

Hi!

Ich frage mich: Für welche Potenzen [mm] $a\in(0,1)$ [/mm] hat die Gleichung [mm] $x^a=-1$ [/mm] eine reelle Lösung?

Für $a=1/2$ gibt es meines Erachtens keine reelle Lösung.
Für $a=1/3$ gibt es meines Erachtens die Lösung $x=-1$.
Aber wie sieht es allgemein für [mm] $a\in\IQ\cap(0,1)$ [/mm] aus, oder noch schlimmer: Was passiert bei [mm] $a=1/\pi$? [/mm]

Hat jemand eine Lösung mit Begründung parat?
Gruß, Harris

        
Bezug
reelle Lösungen von Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:53 Do 16.02.2012
Autor: Gonozal_IX

Hallo Harris,

> Ich frage mich: Für welche Potenzen [mm]a\in(0,1)[/mm] hat die
> Gleichung [mm]x^a=-1[/mm] eine reelle Lösung?

Für gar keine.
  

> Für [mm]a=1/2[/mm] gibt es meines Erachtens keine reelle Lösung.

[ok]

>  Für [mm]a=1/3[/mm] gibt es meines Erachtens die Lösung [mm]x=-1[/mm].

Aber auch nur deines Erachtens.

>  Aber wie sieht es allgemein für [mm]a\in\IQ\cap(0,1)[/mm] aus,
> oder noch schlimmer: Was passiert bei [mm]a=1/\pi[/mm]?
> Hat jemand eine Lösung mit Begründung parat?

Solche Funktionen sind für beliebige reelle Exponenten nur für x>0 definiert.
Beschränkt man sich auf nichtnegative Exponenten, kann man sie auf $x [mm] \ge [/mm] 0$ betrachten.

Für beliebige ganzzahlige Exponenten klappt das ganze dann schon für [mm] $\IR\setminus\{0\}$ [/mm] und erst für nichtnegative ganzzahlige Exponenten kann man den Definitionsbereich auf ganz [mm] \IR [/mm] erweitern.

MFG,
Gono.

Bezug
        
Bezug
reelle Lösungen von Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:49 Do 16.02.2012
Autor: fred97

Für x>0 und a [mm] \in \IR [/mm] ist die allgemeine Potenz [mm] x^a [/mm] definiert (!!) durch:

         [mm] x^a:=e^{a*ln(x)}. [/mm]

Damit dürfte alles geklärt sein.

FRED

            

Bezug
                
Bezug
reelle Lösungen von Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:56 Do 16.02.2012
Autor: felixf

Moin,

> Für x>0 und a [mm]\in \IR[/mm] ist die allgemeine Potenz [mm]x^a[/mm]
> definiert (!!) durch:
>  
> [mm]x^a:=e^{a*ln(x)}.[/mm]
>  
> Damit dürfte alles geklärt sein.

ich vermute, bei dieser Aufgabe sind vor allem negative reelle Werte fuer $x$ interessant. Dazu muss man wissen, was [mm] $\log(x)$ [/mm] fuer eine negative Zahl $x$ alles sein kann (also wie die Loesungen von [mm] $\exp(z) [/mm] = x$ aussehen fuer $x < 0$).

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de