reelle normalformen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Wir betrachten das zur skalaren Gleichung
$x''-2ax'-bx=0$
äquivalente system
$x'=y$
$y'=2ay+bx$
mit reellen parametern a,b.
a) Markieren Sie in der a-b-Ebene alle Flächen, in denen dieses System einen stabilen/instabilen Knoten, einen Sattelpunkt oder einen stabilen/instabilen Strudel besitzt (auf die Untersuchung der LInien, die verschiedene Fälle voneinander trennen, können Sie hier verzichten.)
b) Eine der Übergangslinien ist die Parabel [mm] b=-a^{2}. [/mm] Welches Verhaöten hat das System hier in der Nähe des Gleichgewichts (0,0) (in Abhängigkeit von a)? |
Hallo zusammen,
also wenn ich das richtig sehe, ist die gleichung x''-2ax'-bx=0 abgesehen von den Vorzeichen die schwingungsgleichung (hatten wir als Bsp in der vorlesung).
habe mich daran etwas orientiert und komme, wenn ich das charakteristische polynom ausrechne, zu
[mm] \lambda_{1,2}=a\pm\wurzel{a^{2}+b}
[/mm]
so dann habe ich mir die möglichen fälle angeschaut, d.h.
[mm] a^{2}\ge [/mm] b
a>0 b>0 --> instabiler knoten
a<0 b>0 --> stabiler knoten
[mm] a^{2}< [/mm] b
b<0 --> stabiler Strudel
b=0 --> stabiler wirbel
b>0 --> instabilder Strudel
ist das richtig?
und reicht es laut der aufgaben stellung jetzt wenn ich mit ein 2-dimensionales koordinatensystem zeichne und in jeden quadranten schreibe was dort ist? oder wie ist das gemeint?
und zur b) habe ich überlegt, wenn ich die EW anschaue und [mm] b=-a^{2} [/mm] einsetz komme ich auf [mm] \lambda{1,2}=a [/mm] und damit auf
[mm] u_{1}(t)=e^{at} [/mm] und [mm] u_{2}(t)=te^{at}
[/mm]
und dann hab ich überlegt, dass für [mm] a\le [/mm] 0 der Realteil von [mm] \lamda [/mm] auch [mm] \le [/mm] 0 ist also stabil und der limes t->unendlich gegen 0 läuft
und umgekehrt für a>0 ist der REalteil auch >0 und der limes läuft gegen unendlich.
ist das das was die wissen wollen?
oder bin ich völlig auf dem falschen dampfer?
lg cmueller
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:20 Di 26.01.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|