www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - reflex.&sym. Relationen
reflex.&sym. Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

reflex.&sym. Relationen: Kontrolle&Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:51 Di 11.07.2006
Autor: Raingirl87

Aufgabe
Es sei M={1,2,...,n}.
(i) Wieviele reflexive Relationen gibt es auf M?
(ii) Wieviele symmetrische Relationen gibt es auf M?

Hallo!

Reflexive Relationen sind es [mm] \bruch{n}{2} [/mm] , oder? Aber wieviel symmetrische Relationen sind es? Wie bekomme ich das denn raus?

Danke!

Raingirl87

        
Bezug
reflex.&sym. Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Di 11.07.2006
Autor: mathiash

Hallo,

also schon die Zahl der reflexiven Relationen stimmt wohl nicht ganz.

[mm] R\subseteq\{1,\ldots\ } [/mm]

heisst ja reflexiv genau dann, wenn
[mm] \forall i\in \{1,\ldots , n\}\:\: (i,i)\in [/mm] R.

Dann kannst Du aber für jedes der [mm] n^2-n [/mm] weiteren Paare (x,y) noch separat festlegen, ob [mm] (x,y)\in [/mm] R oder nicht, so dass die
Anzahl dann

[mm] 2^{n^2-n} [/mm]

ist.

Bei den symmetrischen kann ich halt nur für 2er-Mengen (anstatt Paaren) sowie für die Paare (x,x) festlegen, ob sie drin sind oder nicht,
somit ergibt sich als Anzahl

[mm] 2^{\frac{n(n-1)}{2}+n} [/mm]

Gruss,

Mathias

Bezug
                
Bezug
reflex.&sym. Relationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:27 Mi 12.07.2006
Autor: Raingirl87

Irgendwie verstehe ich da nur Bahnhof. :(
Könntest du das evtl bissel genauer erklären, wie man da drauf kommt?

LG, Raingirl87

Bezug
                        
Bezug
reflex.&sym. Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:14 Mi 12.07.2006
Autor: mathiash

Hallo und guten Tag,

eine Relation [mm] R\subseteq\{1,\ldots ,n\}\times\{1,\ldots n\} [/mm]

ist doch dadurch bestimmt, welche Paare (x,y) sie enthält. Wenn Du zB nach der Anzahl aller solchen Relationen fragst,
so hast Du für jedes der [mm] n^2 [/mm] Paare (x,y) die beiden Möglichkeiten [mm] (x,y)\in [/mm] R und [mm] (x,y)\not\in [/mm] R, insgesamt gibt es also
[mm] 2^{n^2} [/mm] solche Relationen.

Analog geht es dann bei Deiner Aufgabe.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de