www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Formale Sprachen" - reguläre Ausdrücke <-> Sprache
reguläre Ausdrücke <-> Sprache < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

reguläre Ausdrücke <-> Sprache: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:52 Di 02.05.2006
Autor: dobberph

Aufgabe 1
Zeigen Sie, dass die von einem regulären Ausdruck a definierte Sprache L(a)
eine reguläre Sprache ist.

Aufgabe 2
Zeigen Sie, dass es zu jeder regulären Sprache L einen regulären Ausdruck a
gibt, so dass L = L(a). Ist dieser Ausdruck eindeutig durch L bestimmt?

Bekannte Definitionen sind:
  Formale Sprache L с Σ* heißt regulär, wenn
  entweder
  L = {},
  L = {ε}, oder
  L = {x} für xєΣ
(“ elementare reguläre Sprachen”)
  oder L1,L2 с Σ* sind regulär und
  L = L1 [mm] \cup [/mm] L2,
  L = L1 ◦ L2, oder
  L = L1*
L läßt sich mit endlich vielen regulären Operationen aus
den elementaren regulären Sprachen ableiten

und

Alphabet Σ’ mit { ( , ) , [mm] \cup [/mm] , ◦ , * , ε } ∩ Σ’ = {}
Ein Wort a є Σ* wobei Σ := Σ’ [mm] \cup [/mm] { ( , ) , [mm] \cup [/mm] , ◦ , * , ε } heißt
regulärer Ausdruck über Σ’, wenn
  entweder
  a = ε
  a = ε
  a = x für x є Σ’
(“ elementare reguläre Ausdrücke”)
  oder a1,a2 є Σ* sind reguläre Ausdrücke und
  a = (a1 [mm] \cup [/mm] a2)
  a = (a1 ◦ a2)
  a = (a1*)

Das ist wieder einmal ein Beweis von einer Definition, ich hasse sowas...



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
reguläre Ausdrücke <-> Sprache: Aufgabe 1
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:05 Di 02.05.2006
Autor: dobberph

Eine Lösung, hoffe sie stimmt, für Aufgabe 1 hab ich selbst gefunden:

Ein regulärer Ausdruck ist eine Formel, die eine (endliche oder unendliche) Sprache beschreibt. Die von einem regulären Ausdruck a erzeugte reguläre Sprache L(a) ergibt sich induktiv über den Aufbau von a:

Definition: Seien x, y reguläre Ausdrücke. Dann ist

L(%)  =       (leere Sprache)
L(a)  =  {a}     für alle a [mm] \varepsilon [/mm] A
L(x + y)  =  L(x)  L(y)     (Vereinigung)
L(xy)  =  L(x)L(y)     (Produkt)
L(x*)  =  L(x)*     (Abschluss)

Das spezielle Symbol % wird gebraucht, damit die leere Sprache durch einen regulären Ausdruck erzeugt werden kann. Die Sprache { [mm] \varepsilon [/mm] } die nur aus dem leeren Wort besteht, wird von dem Ausdruck %* erzeugt.

Stimmt das so?
Aufgabe 2 ist damit aber nicht gelöst, glaube ich... ?!

Bezug
        
Bezug
reguläre Ausdrücke <-> Sprache: Aufgabe 2
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:08 Di 02.05.2006
Autor: dobberph

Hab der ersten Entsprechend selbst eine Lösung für Aufgabe 2, bitte vielleicht kurz abchecken, ob das so i.O. ist?

Reguläre Ausdrücke über einem Alphabet A sind wie folgt induktiv definiert. Das Zeichen % ist ein spezielles Zeichen, das nicht im Alphabet A vorkommt.

Definition: (Regulärer Ausdruck)

a)     % ist ein regulärer Ausdruck;
b)     für alle a [mm] \varepsilon [/mm]  A ist a ein regulärer Ausdruck;
c)     sind x und y reguläre Ausdrücke, so sind auch (x + y), (xy) und x* reguläre Ausdrücke.



Bezug
        
Bezug
reguläre Ausdrücke <-> Sprache: Antwort
Status: (Antwort) fertig Status 
Datum: 04:14 Mo 08.05.2006
Autor: mathiash

Hallo und guten Morgen,

also hier solltest Du einen formalen Beweis durch sog. ''Strukturelle Induktion'' führen.

D.h. zB für die Richtung, daß es zu jeder reg. Sprache einen sie erzeugenden reg. Ausdruck gibt:

Zeig dies erst für die ''elementaren'' Sprachen [mm] L=\emptyset, L'=\{\epsilon\} [/mm]
und [mm] L''=\{a\} [/mm] für [mm] a\in \Sigma [/mm] und nimm dann im Induktionsschritt an, es seien [mm] L_1 [/mm] und [mm] L_2 [/mm]
reg. Sprachen, zu denen es reg. Ausdrücke [mm] R_1, R_2 [/mm] gebe. Dann musst Du zeigen, dass unter dieser
Annahme dann auch reg. Ausdrücke für die Sprachen [mm] L_1\cup L_2, L_1L_2 [/mm] (Konkatenation) und [mm] L_1^{\star} [/mm] gibt.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de