www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - regulärer Punkt/wert
regulärer Punkt/wert < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

regulärer Punkt/wert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:42 Do 02.07.2009
Autor: property_of_ned_flanders

Hallo,

ich habe ein kleines Verständnisproblem und dazu noch eine Aufgabe, die ich lösen muss.

Also erstmal zum Verständnis:

Wir haben regulären Punkt so definiert:
[mm] U\subset \IR^{n} [/mm] offen, [mm] f\in C^{1}(U,\IR^{m}). [/mm]
[mm] z\in [/mm] U heißt regülärer Punkt von f, falls df(z) [mm] \in \mathcal{L}(\IR^{n},\IR^{m}) [/mm] surjektiv ist.

Erstens: Was bedeutet dieses [mm] \mathcal{L} [/mm] ? Lineare Abildungen oder was??
Zweitens: Ist die Voraussetzung, dass df(z) surjektiv ist damit gleichbedeutend, dass [mm] rang(J_{f}(z))=m [/mm] ist??  [mm] (J_{f}(z)=Jacobi-matrix) [/mm]

Aufgabe:
Ich soll die regulären Punkte und Werte von [mm] f(x,y,z)=\pmat{ x^2 + y^2 \\ y^2 + z^2 } [/mm] bestimmen.
Ich habe jetzt die Jacobi Matrix bestimmt:    [mm] \pmat{ 2x & 2y & 0 \\ 0 & 2y & 2z } [/mm]
Wenn mein "zweitens" stimmt, müssten doch alle Punkte regulär sein, für die mindestens zwei Koordinaten [mm] \not=0 [/mm] sind oder?
Wie bekomme ich jetzt die regulären Werte raus?

Gürß Ned.

        
Bezug
regulärer Punkt/wert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Do 02.07.2009
Autor: kamischiki

Hi, ich habe DIE GLEICHE aufgabe zu lösen und habe folgendes zu dem thema gefunden:

http://books.google.com/books?id=PvJug0D6sngC&pg=PA298&lpg=PA298&dq=regul%C3%A4re+punkte&source=bl&ots=2UhdR1xV2K&sig=wJA0SQajTUt5CcMBI2DsOG96eJM&hl=de&ei=A8pMSsXeFoWI_Ab437zABQ&sa=X&oi=book_result&ct=result&resnum=3

Ab seite 297 ungefähr wird es interresant, demnach ist df(x) : [mm] R^n [/mm] -> [mm] R^r [/mm] surjektiv <=> rang Df(x) = r , wobei df(x)=Df(x)*h, h aus [mm] R^n [/mm]

hilft uns das weiter?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de