www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - rekrusive Folge
rekrusive Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rekrusive Folge: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:07 Mi 22.11.2006
Autor: trixi86

Aufgabe
Gegeben seien a, b > 0. Die Folge [mm] (x_{n})n \in \IN [/mm] sei rekursiv definiert durch
[mm] x_{1} [/mm] = [mm] \bruch{1}{2} [/mm] *( b + [mm] \bruch{a}{b}) [/mm]
Zeigen Sie: [mm] (x_{n})n\in \IN [/mm] ist eine beschränkte, monotone Folge. Bestimmen Sie den Limes!

hey ihr,
mein problem ist dass ich mit der folge überhaupt nichts anfangen kann. gibt es für diese folge eine geschlossene darstellung? weil so wie sie jetzt ist kann ich werde konvergenz noch monotonie beweisen. wie das funktioniert weiß ich, tu mir hier nur etwas schwer weil ich mit der folge nichts anfangen kann?
habs auch schon mit fall unterscheidungen versucht. aber es kommt ja immer drauf an was ich für a,b einstetze. wär nett wenn mir jemand helfen könnte.

mfg trixi.

        
Bezug
rekrusive Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:28 Mi 22.11.2006
Autor: banachella

Hallo trixi,

> Gegeben seien a, b > 0. Die Folge [mm](x_{n})n \in \IN[/mm] sei
> rekursiv definiert durch
>  [mm]x_{1}[/mm] = [mm]\bruch{1}{2}[/mm] *( b + [mm]\bruch{a}{b})[/mm]

leider hast du hier nur den Startwert [mm] $x_1$ [/mm] angegeben. Wie ist denn [mm] $x_{n+1}$ [/mm] definiert?

Gruß, banachella

Bezug
                
Bezug
rekrusive Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:54 Mi 22.11.2006
Autor: trixi86

sorry des hab ich wohl ganz vergessen

also der startwert ist  
[mm]x_{1}[/mm] = [mm]\bruch{1}{2}[/mm] *( b + [mm]\bruch{a}{b})[/mm] und [mm] x_{n+1} [/mm] =  [mm]\bruch{1}{2}[/mm] *( [mm] x_{n} [/mm] + [mm]\bruch{a}{x_{n}})[/mm]

Bezug
        
Bezug
rekrusive Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:31 Mi 22.11.2006
Autor: trixi86

ich hoffe jetzt stimmt die folge und mir kann jemand weiter helfen. wäre echt dankbar.

Bezug
                
Bezug
rekrusive Folge: Kochrezept
Status: (Antwort) fertig Status 
Datum: 12:46 Do 23.11.2006
Autor: banachella

Hallo trixi,

das sieht doch jetzt schon viel besser aus!
Gehe nach folgenden Schritten vor:
Zeige zunächst, dass für alle $a,b>0$ gilt, dass der Startwert [mm] $x_1$ [/mm] größer oder gleich [mm] $\sqrt [/mm] a$ ist.
Zeigen dann, dass für [mm] $x\ge\sqrt [/mm] a$ gilt: [mm] $\bruch 12\left(x+\bruch ax\right)\le [/mm] x$.
Nun hast du eine monotone und beschränkte Folge, die folglich gegen den einzigen Fixpunkt der Funktion konvergiert. Um also den Limes zu ermitteln berechnest du die Lösung von [mm] $\bruch 12\left(x+\bruch ax\right)= [/mm] x$.
Kommst du damit zurecht?

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de