www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - rekursiv -> explizit
rekursiv -> explizit < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rekursiv -> explizit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 Sa 09.10.2010
Autor: sTuDi_iDuTs

Aufgabe
die Folge [mm] a_{n} [/mm] definiert durch [mm] 3a_{n-1}-2a_{n-2} [/mm] mit [mm] a_1=2 [/mm] und [mm] a_2=3 [/mm] soll explizit angegeben werden.

Hallo zusammen,
meine Nachhilfeschülerin hat diese Aufgabe gekommen, die ich leider nicht lösen konnte. Vielleicht steh ich auf'm Schlauch...
Die Überlegungen dazu waren:
[mm] a_3=5, a_4=9, a_5=17, a_6=33,... [/mm]
1.) von ihr: [mm] a_n=2+2*(2^{n-2}) [/mm] funktioniert aber nicht!
2.) gemeinsam: von [mm] a_1 [/mm] nach [mm] a_2 "+2^0", [/mm] von [mm] a_2 [/mm] nach [mm] a_3 "+2^1, [/mm] von [mm] a_3 [/mm] nach [mm] a_4 "+2^2" [/mm] usw. deshalb hatten wir vermutet: [mm] 2+2^0+2^1+2^2+... [/mm] aber das können wir in keine Formel packen...
Kann mir dabei jemand helfen?

        
Bezug
rekursiv -> explizit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:17 Sa 09.10.2010
Autor: M.Rex

Hallo

Schreib das ganze doch sinnvollerweise mal mit dem Summenzeichen:

Also:

[mm] 2+2^0+2^1+2^2+... [/mm]
[mm] =2+\summe_{i=0}^{n}2^{\Box} [/mm]

Überlege jetzt mal selber, was für die Box einsetzen musst

Marius




Bezug
                
Bezug
rekursiv -> explizit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:19 Sa 09.10.2010
Autor: abakus


> Hallo
>  
> Schreib das ganze doch sinnvollerweise mal mit dem
> Summenzeichen:
>  
> Also:
>  
> [mm]2+2^0+2^1+2^2+...[/mm]
>  [mm]=2+\summe_{i=0}^{n}2^{\Box}[/mm]
>  
> Überlege jetzt mal selber, was für die Box einsetzen
> musst
>  
> Marius
>  
>
>  

Außerdem könnte man an den Zahlenbeispielen auch erkennen, dass gilt:
[mm] a_3=4+1 [/mm]
[mm] a_4=8+1 [/mm]
[mm] a_5=16+1 [/mm]
[mm] a_6=32+1 [/mm]
Gruß Abakus


Bezug
                        
Bezug
rekursiv -> explizit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:32 Sa 09.10.2010
Autor: sTuDi_iDuTs

Ja klar!
Danke, ich stand wohl richtig auf dem Schlauch =)

Bezug
                
Bezug
rekursiv -> explizit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:37 Sa 09.10.2010
Autor: sTuDi_iDuTs

mit dieser Formel komm ich aber nie auf mein erstes Folgenglied!
[mm] a_1=2 [/mm]
außerdem dürfen/können die Schüler in der 13. Klasse nicht mit Summenzeichen umgehen...

Bezug
                        
Bezug
rekursiv -> explizit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 Sa 09.10.2010
Autor: ChopSuey

Hi,

abakus' Überlegungen führen Dich zu $ [mm] a_n [/mm] = [mm] 2^n [/mm] + 1 $ mit $ n = [mm] \{0,1,2,...\} [/mm] $

Grüße
ChopSuey

Bezug
                                
Bezug
rekursiv -> explizit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:07 Sa 09.10.2010
Autor: M.Rex

Hallo


> Hi,
>  
> abakus' Überlegungen führen Dich zu [mm]a_n = 2^n + 1[/mm] mit [mm]n = \{0,1,2,...\}[/mm]

Nicht ganz. Der Exponent passt so noch nicht ;-)

Marius

>  
> Grüße
>  ChopSuey


Bezug
                                        
Bezug
rekursiv -> explizit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:45 Sa 09.10.2010
Autor: ChopSuey

Hi Marius,

ich sehe bisher keinen Fehler.

$ [mm] a_0 [/mm] = 2 $
$ [mm] a_1 [/mm] = 3 $
$ [mm] a_2 [/mm] = 5 $
$ [mm] a_3 [/mm] = 9 $
$ [mm] a_4 [/mm] = 17 $

Wenn ich abakus' Zahlen trauen darf, sollte das doch stimmen, oder?

Grüße
ChopSuey

Bezug
                                                
Bezug
rekursiv -> explizit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:53 Sa 09.10.2010
Autor: M.Rex

Hallo

Wenn ich mir diese Zahlen als Startwert anschaue

$ [mm] a_3=4+1 [/mm] $
$ [mm] a_4=8+1 [/mm] $
$ [mm] a_5=16+1 [/mm] $
$ [mm] a_6=32+1 [/mm] $

komme ich auf [mm] 2^{n-1}+1 [/mm]

Marius


Bezug
                                                        
Bezug
rekursiv -> explizit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:59 Sa 09.10.2010
Autor: ChopSuey

Hallo Marius,

achso, das war gemeint. Ja, richtig. Die Indizes stimmten nicht.

Danke für den Hinweis!

Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de