www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - relativ kompakt
relativ kompakt < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

relativ kompakt: aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:52 Do 19.08.2010
Autor: nikita

Hallo! Ich habe folgende Aufgabe zu lösen: Sei X topologischer Hausdorffraum. Dann gilt: [mm] A\subset [/mm] B [mm] \subset [/mm] X, B kompakt [mm] \Rightarrow [/mm] A ist relativ kompakt.

Ich habe es folgendermaßen gelöst: Was ich zeigen muss, ist die Kompaktheit von [mm] \overline{A}. [/mm] Sei also  [mm] \bigcup_{i\in I}U_{i} [/mm] eine offene Überdeckung von [mm] \overline{A}. [/mm] Dann ist [mm] (X\setminus \overline{A})\cup \bigcup_{i\in I}U_{i} [/mm] eine offene Überdeckung von B und da B kompakt ist, existiert eine endliche Teilüberdeckung. Da [mm] \overline{A}\subset [/mm] B existiert also auch eine endliche Teilüberdeckung von [mm] \overline{A}. [/mm]
Das wäre meine Überlegung. Was mich aber verunsichert, ist die Tatsache, dass bei meiner Argumentation nirgendwo die Separiertheit von dem Raum X auftaucht. Wo liegt also mein Fehler?
Ein Tipp würde mich freuen!

        
Bezug
relativ kompakt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Do 19.08.2010
Autor: max3000

Deine Argumentation ist eigentlich genau richtig.
So ähnlich habe ich den Beweis auch in meinem Hefter stehen und da haben wir auch nicht die Separiertheit explizit ausgenutzt.

Also irgendeinen Beweisschritt kannst du wahrscheinlich nicht so machen, wenn der Raum nicht separiert wäre. Seh aber leider auch grad nicht genau welcher.


Bezug
        
Bezug
relativ kompakt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Do 19.08.2010
Autor: fred97


> Hallo! Ich habe folgende Aufgabe zu lösen: Sei X
> topologischer Hausdorffraum. Dann gilt: [mm]A\subset[/mm] B [mm]\subset[/mm]
> X, B kompakt [mm]\Rightarrow[/mm] A ist relativ kompakt.
>  
> Ich habe es folgendermaßen gelöst: Was ich zeigen muss,
> ist die Kompaktheit von [mm]\overline{A}.[/mm] Sei also  
> [mm]\bigcup_{i\in I}U_{i}[/mm] eine offene Überdeckung von
> [mm]\overline{A}.[/mm] Dann ist [mm](X\setminus \overline{A})\cup \bigcup_{i\in I}U_{i}[/mm]
> eine offene Überdeckung von B und da B kompakt ist,
> existiert eine endliche Teilüberdeckung. Da
> [mm]\overline{A}\subset[/mm] B existiert also auch eine endliche
> Teilüberdeckung von [mm]\overline{A}.[/mm]
>  Das wäre meine Überlegung. Was mich aber verunsichert,
> ist die Tatsache, dass bei meiner Argumentation nirgendwo
> die Separiertheit von dem Raum X auftaucht

Doch, Du hast es nur nicht gemerkt !


> . Wo liegt also  mein Fehler?

Nirgendwo.  Du hast benutzt:  

              (*) $ [mm] \overline{A}\subset [/mm]  B$

Aber warum gilt das ?

Wir haben:  $ [mm] A\subset [/mm] $ B $ [mm] \subset [/mm] $ X,    und  B kompakt

Dann ist zunächst:

             (**)   [mm]\overline{A} \subset \overline{B} [/mm]

In separierten topologischen Räumen sind kompakte Mengen abgeschlossen ! (in allg. top. Räumen ist das i.a. nicht so)

Also:

           [mm]B= \overline{B} [/mm].

Aus (**) folgt dann (*).


FRED



> Ein Tipp würde mich freuen!  


Bezug
                
Bezug
relativ kompakt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:18 Do 19.08.2010
Autor: nikita

Danke! Das hatte ich übersehen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de