www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - relative Extrema
relative Extrema < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

relative Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Di 11.07.2006
Autor: sali

Aufgabe
Die Funktion f mit f(x,y) = [mm] x^3 -3(x^2)y [/mm] + [mm] 3x(y^2) [/mm] + [mm] y^3 [/mm] - 3x -21y soll auf relative Extrema untersucht werden

bei der Aufgabe kommt raus:
z.B. P1: [mm] f_{xx}f_{yy} [/mm] = 6*30 [mm] >(-6)^2 [/mm] = [mm] (f_{xy})^2 [/mm]
  
       mit Minimum in P1 mit  f(3;2) = -34

soweit ist eigentlich alles klar, ich weiss nur nicht wie man auf die -34 kommt, hab viele Rechnungen versucht, bin jedoch imer auf andere Ergebnisse gekommen..
Wäre schön wenn mir jemand helfen kann! vielen dank!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
relative Extrema: in Fkt.-Gleichung einsetzen
Status: (Antwort) fertig Status 
Datum: 18:47 Di 11.07.2006
Autor: Loddar

Hallo sali!


Setze diese beiden Werte einfach mal in die Funktionsgleichung ein:

[mm] $f(\red{3},\blue{2}) [/mm] \ = \ [mm] \red{3}^3 -3*\red{3}^2*\blue{2} [/mm] + [mm] 3*\red{3}*\blue{2}^2 +\blue{2}^3 [/mm] - [mm] 3*\red{3} -21*\blue{2} [/mm] \ = \ ... \ = \ -34$


Gruß
Loddar


Bezug
                
Bezug
relative Extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:57 Di 11.07.2006
Autor: sali

oh super! vielen dank, ich habe so lange rumgerätselt...

habs noch bei anderen Aufgaben gemacht und bin aufs richtige Ergebnis gekommen. danke!

Bezug
        
Bezug
relative Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Di 11.07.2006
Autor: sali

ach ja, ich habe noch eine kurze Frage zum Thema partielle Ableitung.

Mir ist klar dass ich z.B. y= konst. setze wenn ich [mm] f_x [/mm] bekommen möchte.
Was mache ich aber bei einem Ausdruck wie z.B. :

2(e^xy) ?

kommt dann 2 [mm] (e^x(y^2)) [/mm] raus?

und bei [mm] e^y [/mm] würde ich sagen es bleibt [mm] e^y [/mm]

stimmt das?

vielen Dank schonmal...

Bezug
                
Bezug
relative Extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:00 Di 11.07.2006
Autor: sali

oh, da hab ich was falsch geschrieben, ich meine als Lösung:

[mm] e^{x*(y^2)} [/mm]

also e hoch ( x mal [mm] y^2) [/mm]

weiss immer nicht wie man das richtig schreibt..

Bezug
                
Bezug
relative Extrema: Korrektur: Kettenregel
Status: (Antwort) fertig Status 
Datum: 19:09 Di 11.07.2006
Autor: Loddar

Hallo sali!


Nach welcher Variablen möchtest Du denn das ableiten? Aber eigentlich egal ...

Du musst hier die MBKettenregel anwenden:

[mm] $f_x(x,y) [/mm] \ = \ [mm] e^{x*y}*(x*y)' [/mm] \ = \ [mm] e^{x*y}*y [/mm] \ = \ [mm] y*e^{x*y}$ [/mm]

[mm] $f_y(x,y) [/mm] \ = \ [mm] e^{x*y}*(x*y)' [/mm] \ = \ [mm] e^{x*y}*x [/mm] \ = \ [mm] x*e^{x*y}$ [/mm]


Gruß
Loddar


Bezug
                        
Bezug
relative Extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:18 Di 11.07.2006
Autor: sali

ja du hast recht, da hab ich mich vertan.. also leite ich so einen Ausdruck ganz normal ab, lass aber halt nur die jeweilige variableohne abzuleiten stehen.
ok, habs verstanden denk ich, vielen dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de