www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Optimierung" - restringiertes Optimierung
restringiertes Optimierung < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

restringiertes Optimierung: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:14 Do 27.11.2008
Autor: ow...

Aufgabe
Gegeben sei das restringierte Optimierungsproblem :

P: [mm] $min_{x \in \IR^2}$ $-x_{1}-x_{2}$ [/mm] s.t. [mm] $x_{1}^{2} [/mm] + [mm] x_{2}^{2} \leq [/mm] 2$, [mm] $x_{2}^2 \leq x_{1}$, $x_{2} \geq [/mm] 0$

Zu zeigen : P ist ein konvexes Optimierungsproblem.

Hallo Leute,

Es waere ganz nett wenn ihr mir helfen oder zumindest Tipp geben koennt.

Ich bin der Meinung, dass P kein konvexes Optimierungsproblem ist.
Hier ist der Nachweis:

Um ein Optimierungsproblem konvex zu zeigen, muss man die Funktion und Nebenbedingungen konvex zeigen kann.

Also, sei [mm] $f(x)=-x_{1}-x_{2}$ [/mm]

Dann ist [mm] $\nabla f(x)=\pmat{ -x_{2}-1 \\ -x_{1}-1 } [/mm] $ und [mm] $D^2 [/mm] f(x) = [mm] \pmat{ 0 & -1 \\ -1 & 0 }$ [/mm]
Jetzt sucht man die Eigenwerte von [mm] $D^2 [/mm] f(x)$.

[mm] $det(D^2 [/mm] f(x) - [mm] \lambda [/mm] I) = det [mm] \pmat{ -\lambda & -1 \\ -1 & -\lambda } [/mm] = 0$ , daraus folgt dass [mm] $\lambda_{1} [/mm] = 1$ und [mm] $\lambda_{2}=-1$. [/mm]

Da ein EW kleiner als Null ist, dann ist f(x) nicht konvex. So ist P auch nicht konvex.

Ist meine Meinung richtig?



        
Bezug
restringiertes Optimierung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Do 27.11.2008
Autor: zetamy

Hallo,

> Gegeben sei das restringierte Optimierungsproblem :
>  
> P: [mm]min_{x \in \IR^2}[/mm] [mm]-x_{1}-x_{2}[/mm] s.t. [mm]x_{1}^{2} + x_{2}^{2} \leq 2[/mm],
> [mm]x_{2}^2 \leq x_{1}[/mm], [mm]x_{2} \geq 0[/mm]
>  
> Zu zeigen : P ist ein konvexes Optimierungsproblem.
>  Hallo Leute,
>  
> Es waere ganz nett wenn ihr mir helfen oder zumindest Tipp
> geben koennt.
>  
> Ich bin der Meinung, dass P kein konvexes
> Optimierungsproblem ist.
>  Hier ist der Nachweis:
>  
> Um ein Optimierungsproblem konvex zu zeigen, muss man die
> Funktion und Nebenbedingungen konvex zeigen kann.
>  
> Also, sei [mm]f(x)=-x_{1}-x_{2}[/mm]
>  
> Dann ist [mm]\nabla f(x)=\pmat{ -x_{2}-1 \\ -x_{1}-1 }[/mm] und [mm]D^2 f(x) = \pmat{ 0 & -1 \\ -1 & 0 }[/mm]

Deine Ableitung ist falsch! Es ist [mm] $\nabla [/mm] f(x) = [mm] \vektor{-1 \\ -1}$. [/mm] Aber das brauchst du gar nicht, denn die Konvexität von f ist leicht mit der Definition zu zeigen: f konvex [mm] $:\Leftrightarrow\ f(tx+(1-t)y)\leq [/mm] tf(x)+(1-t)f(y)$.

>  
> Jetzt sucht man die Eigenwerte von [mm]D^2 f(x)[/mm].
>  
> [mm]det(D^2 f(x) - \lambda I) = det \pmat{ -\lambda & -1 \\ -1 & -\lambda } = 0[/mm]
> , daraus folgt dass [mm]\lambda_{1} = 1[/mm] und [mm]\lambda_{2}=-1[/mm].
>  
> Da ein EW kleiner als Null ist, dann ist f(x) nicht konvex.
> So ist P auch nicht konvex.
>  
> Ist meine Meinung richtig?

Nach meiner Rechnung ist f konvex. Also musst du noch prüfen, ob die Nebenbedingungen konvex sind. Sollte ich mich nicht verrechnet haben, ist P konvex.

Gruß, zetamy


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de