www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - schiefe Ebene
schiefe Ebene < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schiefe Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Mi 13.05.2009
Autor: Martinius

Aufgabe 1
3.

An object of mass m is thrown up an inclined plane of inclination [mm] \alpha. [/mm] Assuming no friction, show that the maximum distance reached is

[mm] \frac{v_0^2}{2*g*sin(\alpha)} [/mm]  

Aufgabe 2
4.

If air resistance proportional to the instantaneous velocity (constant of proportionality k) is taken into account, show that the object in Exercise 3 reaches a maximum distance up the incline given by

[mm] \frac{m*v_0}{k}-\frac{m^2g}{k^2}*sin(\alpha)*ln\left(1+\frac{k*v_0}{m*g*sin(\alpha)} \right) [/mm] .

Verify that this distance reduces to that of Exercise 3 as k [mm] \to [/mm] 0.

Hallo,

ich finde meinen Rechenfehler in der 4. Aufgabe nicht. Wenn jemand Zeit hätte einmal drüber zu schaun?


3.

[mm] $m*a=-m*g*sin(\alpha)$ [/mm]

[mm] $v=-g*sin(\alpha)*t+v_0$ [/mm]

[mm] $s=-\frac{1}{2}g*sin(\alpha)*t^2+v_0*t$ [/mm]


[mm] $t_{max}=\frac{v_0}{g*sin(\alpha)}$ [/mm]

[mm] $s_{max}=-\frac{1}{2}g*sin(\alpha)\left( \frac{v_0}{g*sin(\alpha)}\right)*^2+\frac{v_0^2}{g*sin(\alpha)}$ [/mm]

[mm] $s_{max}=\frac{1}{2}* \frac{v_0^2}{g*sin(\alpha)}$ [/mm]



4.

[mm] $m*a=-m*g*sin(\alpha)-k*v$ [/mm]

[mm] $\frac{dv}{dt}=-g*sin(\alpha)-\frac{k}{m}*v$ [/mm]

[mm] $\int \frac{1}{g*sin(\alpha)+\frac{k}{m}*v} \;dv=-\int \;dt [/mm] $

[mm] $\frac{m}{k}*ln\left| g*sin(\alpha)+\frac{k}{m}*v\right|=-t+C_1$ [/mm]

[mm] v(t=0)=v_0 [/mm]    

[mm] $C_1=\frac{m}{k}*ln\left| g*sin(\alpha)+\frac{k}{m}*v_0\right|$ [/mm]

[mm] $ln\left| g*sin(\alpha)+\frac{k}{m}*v\right|=-\frac{k}{m}*t+ln\left| g*sin(\alpha)+\frac{k}{m}*v_0\right|$ [/mm]

[mm] $\frac{k}{m}*v=\left( g*sin(\alpha)+\frac{k}{m}*v_0\right)*e^{-(k/m)*t}-g*sin(\alpha)$ [/mm]

[mm] $v=\left(\frac{m}{k}*g*sin(\alpha)+v_0\right)*e^{-(k/m)*t}-\frac{m}{k}*g*sin(\alpha)$ [/mm]


[mm] $s=\left(-\frac{m^2}{k^2}*g*sin(\alpha)-\frac{m}{k}*v_0\right)*e^{-(k/m)*t}-\frac{m}{k}*g*sin(\alpha)*t$ [/mm]

Können diese Vorzeichen richtig sein?


[mm] $t_{max}=-\frac{m}{k}*ln\left(\frac{m*g*sin(\alpha)}{m*g*sin(\alpha)+k*v_0} \right)=\frac{m}{k}*ln\left(1+\frac{k*v_0}{m*g*sin(\alpha)} \right)$ [/mm]


[mm] $s_{max}=\frac{m}{k}*\left(-\frac{m}{k}*g*sin(\alpha)-v_0\right)*\left(\frac{\frac{m}{k}*g*sin(\alpha)}{\frac{m}{k}*g*sin(\alpha)+v_0} \right)-\frac{m}{k}*g*sin(\alpha)*\frac{m}{k}*ln\left(1+\frac{k*v_0}{m*g*sin(\alpha)} \right)$ [/mm]


[mm] $s_{max}=-\frac{m^2}{k^2}*g*sin(\alpha)-\frac{m^2}{k^2}*g*sin(\alpha)*ln\left(1+\frac{k*v_0}{m*g*sin(\alpha)} \right)$ [/mm]


Der erste Summand stimmt nicht - abgesehen von den Vorzeichen.

Vielen Dank.

LG, Martinius

        
Bezug
schiefe Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Mi 13.05.2009
Autor: leduart

Hallo
bei s hast du nicht die Grenze t=0 eingesetzt, bzw. C vergessen. man sieht sofort [mm] s(0)\ne [/mm] 0
bis [mm] t_{max} [/mm] scheint alles richtig.
Gruss leduart

Bezug
                
Bezug
schiefe Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:34 Mi 13.05.2009
Autor: Martinius

Hallo leduart,

Dank dir - jetzt habe ich das Ergebnis.

[mm] $s_{max}=\frac{m*v_0}{k}-\frac{m^2}{k^2}*g*sin(\alpha)+ln\left(1+\frac{k*v_0}{m*g*sin(\alpha)} \right)$ [/mm]


Ich habe keine Idee zur letzten Aufgabe. Wie zeige ich, das [mm] s_{max} [/mm] für t [mm] \to [/mm] 0

[mm] $\frac{v_0^2}{2*g*sin(\alpha)}$ [/mm]

ist?

Vielen Dank für einen Tipp.

LG, Martinius

Bezug
                        
Bezug
schiefe Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 00:22 Do 14.05.2009
Autor: leduart

Hallo
aus der formel direkt kann man das nicht ablesen. fuer k gegen 0 kann man den ln(1+k*C) durch die Tangente kC  erstzen
also [mm] ln(1=x)\approx [/mm] x
aber dann bekommt man 0 raus.
da man im verlauf der rechnung so oft durch k dividiert hat, muesste man das zurueckverfolgen und vermeiden. Das auszuprobieren ists mir zu spaet. also such mal weiter vorne. natuerlich kann man das gleich in der Dgl machen, dann ist man direkt da! ;-)
Gute Nacht leduart

Bezug
                                
Bezug
schiefe Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:33 Do 14.05.2009
Autor: Martinius

Hallo leduart,

vielen Dank für den Hinweis. [anbet]

Ich überlege mal mein Hirn bei e-bay einzustellen; Startpreis 1 Euro. Aber wahrscheinlich wird's niemand haben wollen. ;-)

LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de