www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - schwacher Wechselwinkelsatz
schwacher Wechselwinkelsatz < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schwacher Wechselwinkelsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 So 28.09.2014
Autor: sinalco

Aufgabe
Warum gilt in einer Hilbertebene im Allgemeinen nicht die Umkehrung des schwachen Wechselwinkelsatzes?

Schwacher Wechselwinkelsatz:
Haben in einer Hilbertebene zwei von einer Transversalen geschnittene Geraden ein Paar kongruenter Wechselwinkel, so sind sie parallel.

Definition Hilbertebene: 5-Tupel [mm] (P,G,\*,\cong [/mm] S, [mm] \cong [/mm] W) das die Inzidenzaxiome, die Anordnungsaxiome und die Kongruenzaxiome für Strecken und Winkel erfüllt.

Also es gibt noch einen (starken) Wechselwinkelsatz in dem Skript an dem ich mich orientiere. Dieser besagt:

Sei H eine Hilbertebene, die das Parallelenaxiom erfüllt. Seinen g [mm] \parallel [/mm] h zwei parallele Geraden und t eine Transversale zu g und h. Dann haben g, h bezüglich t zwei Paare kongruenter Wechselwinkel.


Ich vermute jetzt, dass die Umkehrung des schwachen Wechselwinkelsatzes nicht funktioniert, weil eine Hilbertebene im Allgemeinen nicht das Parallelenaxiom erfüllt.

Schön wäre jetzt allerdings noch ein Beispiel mit der ich das untermauern könnte. Also eine Hilbertebene die keine affine Ebene ist.

Grüße und Danke

        
Bezug
schwacher Wechselwinkelsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 So 28.09.2014
Autor: steppenhahn

Hallo sinalco,

> Warum gilt in einer Hilbertebene im Allgemeinen nicht die
> Umkehrung des schwachen Wechselwinkelsatzes?
>
> Schwacher Wechselwinkelsatz:
> Haben in einer Hilbertebene zwei von einer Transversalen
> geschnittene Geraden ein Paar kongruenter Wechselwinkel, so
> sind sie parallel.
>
> Definition Hilbertebene: 5-Tupel [mm](P,G,\*,\cong[/mm] S, [mm]\cong[/mm] W)
> das die Inzidenzaxiome, die Anordnungsaxiome und die
> Kongruenzaxiome für Strecken und Winkel erfüllt.
>  Also es gibt noch einen (starken) Wechselwinkelsatz in dem
> Skript an dem ich mich orientiere. Dieser besagt:
>
> Sei H eine Hilbertebene, die das Parallelenaxiom erfüllt.
> Seinen g [mm]\parallel[/mm] h zwei parallele Geraden und t eine
> Transversale zu g und h. Dann haben g, h bezüglich t zwei
> Paare kongruenter Wechselwinkel.
>  
> Ich vermute jetzt, dass die Umkehrung des schwachen
> Wechselwinkelsatzes nicht funktioniert, weil eine
> Hilbertebene im Allgemeinen nicht das Parallelenaxiom
> erfüllt.
>
> Schön wäre jetzt allerdings noch ein Beispiel mit der ich
> das untermauern könnte. Also eine Hilbertebene die keine
> affine Ebene ist.

Schau mal hier zur Poincare-Ebene:

[]Skript,

Seite 99 / 100. Das ist eine Hilbertebene, die das starke Parallelenaxiom nicht erfüllt.
Hilft das?

Viele Grüße,
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de