www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - schwaches Maximumprinzip
schwaches Maximumprinzip < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schwaches Maximumprinzip: Tipp
Status: (Frage) beantwortet Status 
Datum: 23:59 Mi 18.10.2017
Autor: Noya

Aufgabe
Gilt die Aussage des schwachen Maximumprinzips auch noch, wenn man die Voraussetzung [mm] "\Omega [/mm] beschränkt" weglässt? Begründe deine Antwort.

Guten Abend ihr Lieben,

uns wurde obige Aufgabe gestellt.
Zuerst mal unsere Definitionen :

schwaches Max.prinzip :
Sei [mm] \Omega [/mm] eine beschränkte, offene Menge und u [mm] \in C^{0}(\overline{\Omega}) [/mm] sei eine subhamonische Funktion. Dann gilt
[mm] \underbrace{sup}_{\Omega}u=\underbrace{sup}_{\overline{\Omega}}u. [/mm]

subharmonische Funktion:
[mm] \Omega \subset \IR^n [/mm] offene Menge, u [mm] \in C^2(\Omega). [/mm] Wenn dann
[mm] \Delta [/mm] u(x)= [mm] \summe_{i=1}^{n}\bruch{\partial^2 u}{\partial^2 x_i}(x) \ge [/mm] 0 für alle x [mm] \in \Omega [/mm] ist, so nennen wir die u subharmonisch in [mm] \Omega. [/mm]


So jetzt meine Überlegung.
ich betrachte beispielhaft eine offene Menge [mm] \Omega=\{x \in \IN :1 u stetig auf [mm] \overline{\Omega}. [/mm]

u subharmonisch auf [mm] \Omega [/mm] : u nimmt sein Maximum nicht in [mm] \Omega [/mm] an.
max u [mm] \notin \Omega [/mm]
aber sup u [mm] \in \overline{\Omega}, [/mm] denn sup u=4 [mm] \in \overline{\Omega} [/mm]


[mm] \partial \Omega [/mm] = [mm] \{1,4\} [/mm] oder?
also sup u [mm] \in \partial \Omega [/mm]
aber sup u [mm] \notin \Omega [/mm]

und somit gilt das schwache Maximumsprinzip nicht für unbeschränkte Mengen oder?
Ist das von der Idee her korrekt? Könntet ihr mir da eventuell helfen? wie kann man das anständig begründen?

Vielen Dank und einen schönen Abend noch :)





        
Bezug
schwaches Maximumprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 07:48 Do 19.10.2017
Autor: fred97

Dein  $ [mm] \Omega=\{x \in \IN :1
Bezug
                
Bezug
schwaches Maximumprinzip: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:13 Do 19.10.2017
Autor: Noya

🙄

Angenommen ich betrachte dann das als Intervall... also [mm] \Omega= [/mm] (1,4)
Und der Rest dann analog zz oben.

Wäre nett wenn du mir es auf die Sprünge helfen könntest. 😕



okay vielleicht allgemein :

Menge offen : M [mm] \cap \partial [/mm] M = [mm] \emptyset [/mm]
Abschluss : [mm] \overline{M} [/mm] = M [mm] \cup \partial [/mm] M
Rand : [mm] \partial [/mm] M =  [mm] \overline{M} [/mm] / [mm] M^{\circ} [/mm]

jetzt :
[mm] \Omega [/mm] offen, u [mm] \in C^{0} (\overline{\Omega}) [/mm]

u subharmonisch auf $ [mm] \Omega [/mm] $ : u nimmt sein Maximum nicht in $ [mm] \Omega [/mm] $ an.
max u $ [mm] \notin \Omega [/mm] $
sup u [mm] \in \partial \Omega \subset \overline{\Omega}, [/mm]
sup u [mm] \notin \Omega, [/mm] da [mm] \Omega [/mm] offen und somit gehört der Rand nicht zu [mm] \Omega. [/mm]


und somit gilt das schwache Maximumsprinzip nicht für unbeschränkte Mengen oder?
Ist das von der Idee her korrekt? Könntet ihr mir da eventuell helfen? wie kann man das anständig begründen?

Vielen Dank und einen schönen Abend noch :)

Bezug
                        
Bezug
schwaches Maximumprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 08:57 Do 19.10.2017
Autor: fred97

.> 🙄
>  
> Angenommen ich betrachte dann das als Intervall... also
> [mm]\Omega=[/mm] (1,4)

[mm] \Omega [/mm] ist beschränkt !


> Und der Rest dann analog zz oben.
>
> Wäre nett wenn du mir es auf die Sprünge helfen
> könntest. 😕
>  
>
> okay vielleicht allgemein :
>  
> Menge offen : M [mm]\cap \partial[/mm] M = [mm]\emptyset[/mm]
>   Abschluss : [mm]\overline{M}[/mm] = M [mm]\cup \partial[/mm] M
>  Rand : [mm]\partial[/mm] M =  [mm]\overline{M}[/mm] / [mm]M^{\circ}[/mm]
>  
> jetzt :
>  [mm]\Omega[/mm] offen, u [mm]\in C^{0} (\overline{\Omega})[/mm]
>  
> u subharmonisch auf [mm]\Omega[/mm] : u nimmt sein Maximum nicht in
> [mm]\Omega[/mm] an.
>  max u [mm]\notin \Omega[/mm]
>  sup u [mm]\in \partial \Omega \subset \overline{\Omega},[/mm]
> sup u [mm]\notin \Omega,[/mm] da [mm]\Omega[/mm] offen und somit gehört der
> Rand nicht zu [mm]\Omega.[/mm]
>  
>
> und somit gilt das schwache Maximumsprinzip nicht für
> unbeschränkte Mengen oder?
>  Ist das von der Idee her korrekt? Könntet ihr mir da
> eventuell helfen? wie kann man das anständig begründen?
>  
> Vielen Dank und einen schönen Abend noch :)

Ich formuliere mal das schwache Max. Prinzip:


Sei $ [mm] \Omega [/mm] $ eine beschränkte, offene Menge und $ u  [mm] \in C^{0}(\overline{\Omega}) [/mm] $ sei eine subharmonische Funktion. Dann ex. ein [mm] x_0 \in \partial \Omega [/mm] mit

[mm] \max u(\overline{\Omega})=u(x_0). [/mm]

Das [mm] \max u(\overline{\Omega}) [/mm] überhaupt existiert liegt daran, dass [mm] \overline{\Omega} [/mm] kompakt (und u stetig) ist.

Nun überlege Dir ein unbeschränktes [mm] \Omega [/mm] und ein geeignetes u, derart, dass u auf [mm] \overline{\Omega} [/mm] nicht nach oben beschränkt ist

>  


Bezug
                                
Bezug
schwaches Maximumprinzip: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:02 Do 19.10.2017
Autor: Noya


>  
> Ich formuliere mal das schwache Max. Prinzip:
>  
>
> Sei [mm]\Omega[/mm] eine beschränkte, offene Menge und [mm]u \in C^{0}(\overline{\Omega})[/mm]
> sei eine subharmonische Funktion. Dann ex. ein [mm]x_0 \in \partial \Omega[/mm]
> mit
>  
> [mm]\max u(\overline{\Omega})=u(x_0).[/mm]
>  
> Das [mm]\max u(\overline{\Omega})[/mm] überhaupt existiert liegt
> daran, dass [mm]\overline{\Omega}[/mm] kompakt (und u stetig) ist.
>  
> Nun überlege Dir ein unbeschränktes [mm]\Omega[/mm] und ein
> geeignetes u, derart, dass u auf [mm]\overline{\Omega}[/mm] nicht
> nach oben beschränkt ist
>  >  

Danke.

[mm] \Omega [/mm] = [mm] (0,\infty) [/mm] und u=x ?



Bezug
                                        
Bezug
schwaches Maximumprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 10:12 Do 19.10.2017
Autor: fred97


>
> >  

> > Ich formuliere mal das schwache Max. Prinzip:
>  >  
> >
> > Sei [mm]\Omega[/mm] eine beschränkte, offene Menge und [mm]u \in C^{0}(\overline{\Omega})[/mm]
> > sei eine subharmonische Funktion. Dann ex. ein [mm]x_0 \in \partial \Omega[/mm]
> > mit
>  >  
> > [mm]\max u(\overline{\Omega})=u(x_0).[/mm]
>  >  
> > Das [mm]\max u(\overline{\Omega})[/mm] überhaupt existiert liegt
> > daran, dass [mm]\overline{\Omega}[/mm] kompakt (und u stetig) ist.
>  >  
> > Nun überlege Dir ein unbeschränktes [mm]\Omega[/mm] und ein
> > geeignetes u, derart, dass u auf [mm]\overline{\Omega}[/mm] nicht
> > nach oben beschränkt ist
>  >  >  
>
> Danke.
>  
> [mm]\Omega[/mm] = [mm](0,\infty)[/mm] und u=x ?

Das passt.

>  
>  


Bezug
                                                
Bezug
schwaches Maximumprinzip: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:18 Do 19.10.2017
Autor: Noya


> > [mm]\Omega[/mm] = [mm](0,\infty)[/mm] und u=x ?
>  
> Das passt.


Okay und jetzt versuche ich das drauf anzuwendenn?

Supremum existiert doch dann weder auf [mm] \Omega [/mm] noch auf dem Rand oder?
muss u [mm] \in C^2 [/mm] seine wegen subharm? Dann nehme ich doch besser
[mm] U=x^2 [/mm]
Dann wäre u ja auch subharm oder?

[mm] \Omega =(0,\infty) [/mm]

[mm] \overline{\Omega} [/mm] = [mm] [0,\infty][/mm]

Bezug
                                                        
Bezug
schwaches Maximumprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Do 19.10.2017
Autor: fred97


> > > [mm]\Omega[/mm] = [mm](0,\infty)[/mm] und u=x ?
>  >  
> > Das passt.
>  
>
> Okay und jetzt versuche ich das drauf anzuwendenn?
>
> Supremum existiert doch dann weder auf [mm]\Omega[/mm] noch auf dem
> Rand oder?

Ja


> muss u [mm]\in C^2[/mm] seine wegen subharm?

Ja


> Dann nehme ich doch
> besser
>  [mm]U=x^2[/mm]


Ja, das passt auch.


> Dann wäre u ja auch subharm oder?

Ja


>
> [mm]\Omega =(0,\infty)[/mm]
>
> [mm]\overline{\Omega}[/mm] = [mm][0,\infty][/mm]  

Ja




Bezug
                                                                
Bezug
schwaches Maximumprinzip: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:31 Do 19.10.2017
Autor: Noya

Also um das richtig zu verstehen, mit diesem Beispiel wäre meine Argumentation von oben richtig?
Oder wie?



Bzw Überlegung :
Mit dem obigen Beispiel.
Nach dem Satz müsste gelten, dass u sein supremum auf [mm] \Omega [/mm] annimmt und das gleich dem Supremum auf [mm] \partial \Omega [/mm] ist.
Aber u nimmt weder auf [mm] \Omega [/mm] noch auf [mm] \partial \Omega [/mm] sein Supremum an.

Bezug
                                                                        
Bezug
schwaches Maximumprinzip: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Sa 21.10.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de