www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - semidefinite Formen
semidefinite Formen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

semidefinite Formen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 Fr 02.06.2006
Autor: Riley

Guten Nachmittag!
hab eine frage zu einem beispiel, das wir in der VL durchgenommen haben.
Wir haben herausgefunden, dass wenn man Funktionen mehrerer Veränderlicher auf Extremwerte untersuchen will, eigentlich nach 2 sachen schaun muss:
1.) [mm] \bruch{df}{dx_i}(x)=0 [/mm]
2.) die zugehörige quadratische Form Q definit [mm] \Rightarrow [/mm] Extremwert

Weiter haben wir festgestellt, dass man bei semidefiniten Formen nicht entscheiden kann ob ein Extremum vorliegt oder nicht und dieses Bsp dazu durchgenommen:
f(x,y) = x² + y²
die zugehörige quadratische Form ist ja
[mm] \pmat{ \bruch{d²f}{dx²}(0,0) & \bruch{d²f}{dxdy}(0,0) \\ \bruch{d²f}{dydx}(0,0) & \bruch{d²f}{dy²}(0,0) } [/mm] =  [mm] \pmat{ 2 & 0 \\ 0 & 0 } [/mm]

versteh ich das richtig, dass diese form positiv semidefint ist, da det(2)=2 und [mm] det(\pmat{ 2 & 0 \\ 0 & 0 }) [/mm] = 0 ??
wie gesagt, wir haben aufgeschrieben, dass bei semidefiniten formen keine allgemeingültigen aussagen möglich sind, aber unser prof meinte bei 0 liege ein Minimum vor. woher weiß er das dann???

genauso haben wir noch f(x,y)=x²-y² betrachtet, dort liegt anscheinend bei 0 ein sattelpunkt vor, aber wie kann ich das herausfinden, wenn das "normale" kriterium versagt?

viele grüße
die fragende riley :-)

        
Bezug
semidefinite Formen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Di 06.06.2006
Autor: leduart

Hallo riley
Manchmal sieht man der Funktion an, ob es ein Minimum ist! hier ist f(x) wegen der Quadrate ?ge 0, also bei 0 ein Minimum, dazu muss man nichtmal differenzieren, genausowenig wie im 1d Fall bei [mm] f(x)=(x-a)^{2}+b [/mm] bei x=a ein Minimum. usw.
entsprechend siehst du ,dass bei [mm] $f(x,y)=x^2-y^2 [/mm] kein Min oder Max vorliegt, denn wenn du x=0 fest  und y verkl. oder vergrösserst wird f(x,y) kleiner, wenn du y=0 festlässt und x ändert wird f(xy)größer! also ein Sattel, Deine Beine hängen in y- Richtung, vor und hinter dir gehts rauf!
Gruss leduart

Bezug
                
Bezug
semidefinite Formen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:28 Di 06.06.2006
Autor: Riley

HI Leduart!!
Danke für deine Erklärungen, das hab ich jetzt verstanden *freu*

viele grüße
Riley

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de