www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - senkrechter Vektor
senkrechter Vektor < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

senkrechter Vektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 So 04.03.2007
Autor: Mathe-Andi

Aufgabe
a) Eine Ebene ist durch die Punkte A(1|3|-4), B(2|3|1) und C(8|4|2) gegeben. Stellen Sie die Ebenengleichung in vektorieller und parameterfreier Form auf.

b) Bestimmen Sie einen Vektor, der senkrecht zu dieser Ebene steht.

Hallo.

Ich habe beide Aufgaben gemacht und möchte wissen, ob sie richtig sind. Auf b) lege ich mehr Wert, weil ich mir da nicht sicher bin, ob ich das so machen darf.

[Dateianhang nicht öffentlich]


Liebe Grüße

Andreas

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
senkrechter Vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 So 04.03.2007
Autor: VNV_Tommy

Hallo Andreas!

> a) Eine Ebene ist durch die Punkte A(1|3|-4), B(2|3|1) und
> C(8|4|2) gegeben. Stellen Sie die Ebenengleichung in
> vektorieller und parameterfreier Form auf.
>  
> b) Bestimmen Sie einen Vektor, der senkrecht zu dieser
> Ebene steht.
>  Hallo.
>  
> Ich habe beide Aufgaben gemacht und möchte wissen, ob sie
> richtig sind. Auf b) lege ich mehr Wert, weil ich mir da
> nicht sicher bin, ob ich das so machen darf.
>  
> [Dateianhang nicht öffentlich]

Aufgabe a)
[daumenhoch] Richtig.

Aufgabe b)
Hier hast du leider einen senkrechten Vektor zum Ortsvektor des Punktes A ermittelt. Der gesuchte Vektor muss jedoch, wenn er senkrecht auf der Ebene stehen soll, senkrecht auf den beiden Richtungsvektoren stehen. Es muss demnach gelten:

[mm] \vektor{x \\ y \\ z}\circ\vektor{1 \\ 0 \\ 5}=0 [/mm] und auch [mm] \vektor{x \\ y \\ z}\circ\vektor{7 \\ 1 \\ 6}=0 [/mm] .

Die Skalarprodukte könntest du nun ausmultiplizieren und das entstehende Gleichungssystem (2 Gleichungen; 3 Unbekannte) lösen indem du dir einen Teil der Lösung wählst.

Oder du machst es viel einfacher:
Sieh dir die Koeffizienten bei x, y und z in deiner parameterfreien Form an. Diese repräsentieren einen Vektor, welcher immer senkrecht auf der Ebene steht (der sog. "Normalenvektor"). Ein Vektor, der also senkrecht auf der Ebene steht wäre also [mm] \vec{n}=\vektor{5 \\ -29 \\ -1}. [/mm]

Gruß,
Tommy

Bezug
                
Bezug
senkrechter Vektor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 So 04.03.2007
Autor: Mathe-Andi

Super! Jetzt weiß ich auch, was der Normalenvektor ist und dass ich den immer nehmen kann, wenn ein senkrechter Vektor zur Ebene gesucht wird.

Vielen Dankeschön! :)


Grüße

Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de