www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - singulär Eigwert
singulär Eigwert < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

singulär Eigwert: Beweis
Status: (Frage) beantwortet Status 
Datum: 23:14 So 01.05.2005
Autor: Marianne

Hallo Ihr!!!
Ich habe diese Frage:
Wie kann man beweisen, dass eine Matrix singulär ist, wenn ein Eigenwert von der Matrix Null ist.
Ich hab keine sooo richtige Ahnung wie das zu machen ist.
Ich hab nur so den Ansatz, dass bei singulär (also nich inverteirbar): det [mm] (a*I_{n}-A) [/mm]  A--Abbildungsmatrix,   a--Eigenwert,  [mm] I_{n}--Einheitsmatrix [/mm]

Naja, aber davon dann auf die Behauptng oben??

Naja, danke  

        
Bezug
singulär Eigwert: Antwort
Status: (Antwort) fertig Status 
Datum: 23:59 So 01.05.2005
Autor: Jay-G

Hallo!
Also du bringst die matrix auf obere Dreiecksform (mit Umformungen die die determinante invariant lassen).
Dann siehst du die EW auf der Diagonalen. Da 0 EW ist ist die determinante gleich null (Det bei ob Dreiecksmatrix= Produkt der Diagonalelemente)
Also ist die matrix singulär.


Oder etwas naiver.
Stell dir vor du suchst die Umkehrabbildung zur Matrix.
Dann hast du ja einen Eigenvektor der auf die Null geworfen wird von der ursprl. Matrix. Also muss die 0 theoretisch mit der umkehrabb auf diesen Eiugenvektor geworfen werden. Das geht aber nicht, denn 0 wird immer uf die 0 geworfen bei einer lin. Abb. Also ist das nicht so gut, sprich es kann nicht bijektiv sein. Also  nix gut.

MFG

Bezug
                
Bezug
singulär Eigwert: Dreiecksform nötig?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:17 Mo 02.05.2005
Autor: Peter_Pein

Hallo,

es ist schon spät und ich mag etwas übersehen, aber:
0 ist EW [mm] $\Rightarrow\, [/mm] det(A-0*I)=0$ oder eben $det(A)=0$ ??

also ist der Ansatz von Marianne doch echt klasse, oder?

[gutenacht]
Peter


Bezug
        
Bezug
singulär Eigwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:08 Mo 02.05.2005
Autor: Jay-G

Hi!
Ja stimmt, du meinst also der Eigenvektor v zum EW null ist im Kern von (A-0*Id) =kern (A), also ist das bild nicht mehr der ganze Vektorraum, also det A =0.
Ja so hab ich das nicht betrachtet, ist natürlich sehr gut, dann steht die lösung praktisch sofort vor einem.

MFG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de