snm theorem < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:54 Mi 07.02.2007 | Autor: | AriR |
Hey leute
die aussage des snm theorems ist doch eigentlich "nur", dass wenn man eine funktion
[mm] f:\IN^{n+m}\to\IN [/mm] mit [mm] (x,y)\mapsto [/mm] f(x,y)
mit [mm] x\in\IN^n [/mm] und [mm] y\in\IN^m
[/mm]
man die x sozsagen festhalten kann und die funktion nur noch von y abhängig macht.
Also [mm] f:\IN^m\to\IN [/mm] mit [mm] (x,y)\mapsto [/mm] f(x,y)
mit dem lambda formuliert könnte man dsa viell auch so ausdrücken:
Wenn man ein f von der vorm [mm] \lambda [/mm] x,y.f(x,y) kann man ein [mm] S^n_m [/mm] finden, so das
[mm] \lambda x.f(S^n_m(x),y)
[/mm]
oder?
ich hoffe ich drücke mich hier eingiermaßen klar aus.
Würde mich über eine antwort sehr freuen. Schreiben nächste woche klausur :(
Gruß Ari ;)
|
|
|
|
Hallo und guten Morgen,
genauer: das smn-Theorem besagt, dass, wenn f [mm] \mu-rekursiv [/mm] ist, dann auch die Funktion
[mm] \lambda y.f(x_0,y)
[/mm]
(für festes [mm] x_0)
[/mm]
[mm] \mu-rekursiv [/mm] ist
(analog [mm] \lambda x.f(x,y_0)
[/mm]
für festes [mm] y_0).
[/mm]
Gruss,
Mathias
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 09:41 Do 08.02.2007 | Autor: | AriR |
jo dann habe ich es doch richtig verstanden,
was vielleihct nicht ganz so wichtig ist, aber troztdem unklar geblieben ist, ist folgendes:
Wir hanbe gesagt, dass man dank der universellen n-stelligen funktion hardwaremäßig nur noch eine maschiene benötigt, um alle n-stelligen funktionen zu berechnen. das ist soweit klar.
nur dank des snm theorems könnte man auch alle eine maschiene bauen, die alle funktionen beliebiger stelligkeit berechnet.
aber wenn die maschiene sagen wir mal eigentlihc für m argumente gebaut wurde und man übergibt ihr sagen wir mal n+m argumente, dann wäre diese funktion mit dem snm theorem auf der maschiene berechenbar, aber man müsste die ersten x argumente fest mit in die maschiene bauen oder nicht?
wäre es doch zB unmöglich folgende funktionen auf der maschiene zu berechnen:
[mm] \lamda\overrightarrow{y}.f(1,x_2,....,x_n,y_1,...,y_n)
[/mm]
[mm] \lambda\overrightarrow{x}.f(x_1,x_2,....,x_n,y_1,1,...,y_n)
[/mm]
würde es solch eine maschiene geben, die beide funktionen berechnet, dann müsste sie auch insbesonder die erste funktion berechnen können und somit die [mm] y_1,...,y_n [/mm] fest in sich integriert haben. würde man dann aber die 2. funktion berechnen wollen, müssten man gerade diese festintegriere zahlen wieder ändern, was ja nicht wirklich möglich ist und andere zahlen dort fest integrieren etc etc.
ich hoffe ihr versteht was ich meine, weiß nicht ob das Bsp jetzt so wirklich passend ist.
gruß :)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:20 Di 13.02.2007 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|