www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - sphärische Geometrie
sphärische Geometrie < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

sphärische Geometrie: Idee
Status: (Frage) beantwortet Status 
Datum: 10:43 Do 24.04.2008
Autor: Mathegirl

Wisst ihr, welches Problem es gibt, wenn ich den Begriff der Strecke in der sphärischen Geometrie wie gewohnt definiere? Ich habe gelesen, dass da ein Problem auftritt, aber welches, das habe ich noch nicht herausgefunden.

Definition einer Strecke ist ja:
Strecke =ist eine gerade Linie, die von zwei Punkten begrenzt wird, sie ist die kürzeste Verbindung ihrer beiden Endpunkte.

Aber worin genau liegt nun das Problem in der sphärischen Geometrie??

mfg mathegirl

Ich habe diese Frage in keinem anderen Forum und keiner anderen Internetseite gestellt

        
Bezug
sphärische Geometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:44 Do 24.04.2008
Autor: Al-Chwarizmi

Hello Mathegirl,


es kommt ein wenig darauf an, in welchem Zusammenhang das Thema aufgetreten ist.

Ich könnte mir aber vorstellen, dass es um Folgendes geht:
Entsprechend der Strecke im euklidischen Raum gibt es in der sphärischen Geometrie den kürzesten Weg als kürzester Teilbogen eines Grosskreises.
Wenn es dann um Streckenlängen geht, ist aber auf der Kugeloberfläche eine wichtige Eigenschaft der (euklidischen) Metrik nicht erfüllt: Wenn 3 Punkte A,B,C in dieser Reihenfolge auf einer geraden Linie  liegen, so ist  d(A,C) = d(A,B) + d(B,C).
Dabei sei d(A,B) der (kürzeste) Abstand zwischen den Punkten A und B.

Dies ist z.B. auf der Erdoberfläche nicht erfüllt. Man kann die Punkte A,B,C auf einem Grosskreis so platzieren, dass obige Gleichung nicht zutrifft, weil die kürzeste Verbindung zwischen A und C nicht durch B, sondern durch den "Antipodenpunkt" von B geht.

Gruß  al-Ch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de