www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - sstetigkeit und polynome
sstetigkeit und polynome < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

sstetigkeit und polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 So 27.08.2006
Autor: hooover

Aufgabe
Entscheiden und begründen sie, ob die Gl. eine Lsg. hat.

[mm] (3x^2-2x+1)=(2x^2-2x-2) [/mm]

Hallo Leute ich hab zwar ne Lösung aber komme amit nicht weiter, vielleicht habe ich auch nicht alles beachtet.

Also diese simple Gl habe ich halt nach Null umgestellt und dann nach x aufgelöst. Quasi wie nach ner Nullstelle das untersucht.

jetzt kommt als Lsg. aber    [mm] x=\wurzel{-3} [/mm] raus.

Gut in [mm] \IR [/mm] ist das nicht definiert aber halt in [mm] \IC. [/mm] Wie stell ich das dar?

so [mm] I\wurzel{3} [/mm] und [mm] I\wurzel{-3}? [/mm]

Und das ganze läuft ja unter dem Thema stigkeit usw. Wie hängt das denn genau damit zusammen?


Vielen DAnk Gruß hooover

        
Bezug
sstetigkeit und polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 So 27.08.2006
Autor: Denny22

Hallo,

also Deine Vorgehensweise ist Völlig richtig:

[mm] $x^{2}+3=0$ [/mm]

Wenn man diese Gleichung mit der p-q-Formel versucht zu lösen, bemerkt man dass die Lösung

[mm] $\wurzel{-3}$ [/mm]

ist. Also gibt es keine reelle Nullstelle des Polynoms und insbesondere keine reelle Zahl, die diese Gleichung löst.

Versucht man es im komplexen und verwendet:

[mm] $i^{2}=-1$ [/mm]

so erhält man als Lösung

[mm] $x_{1,2}=\pm\wurzel{(-1)*3}=\pm i*\wurzel{3}$ [/mm]

Damit haben wir zwei Lösungen gefunden.

Auch wenn dieses Polynom komplexe Nullstellen haben, ist es in diesem Fall natürlich stetig in [mm] $\IR$, [/mm] was man sich leicht vorstellen kann, wenn man den Graphen zeichnet und bedenkt, dass die Imaginärteile ungleich null sind.

Hoffe, dass Dir das geholfen hat.

Ciao Denny


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de