www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - stammfunktion bilden
stammfunktion bilden < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stammfunktion bilden: diverse aufgaben
Status: (Frage) beantwortet Status 
Datum: 19:18 So 03.12.2006
Autor: Nightwalker12345

Aufgabe
a) f(x) = 1 / [mm] \wurzel{4x} [/mm]
b) 3 / [mm] \wurzel{2x} [/mm]
c) [mm] 2x-x^{5}/x³ [/mm]
d) [mm] 4/\wurzel{x} [/mm] + 7/x²

a) = [mm] \wurzel{4x} [/mm] ^-1
  v(x) = [mm] \wurzel{4x} [/mm] => [mm] -2x^{-1,5} [/mm]
u(v) = [mm] x^{-1} [/mm] => [mm] -v^{-2} [/mm]

==> - [mm] (4x^{1/2})^-2 [/mm] / [mm] -2x^{-1/2}= [/mm] - [mm] \wurzel{2x} [/mm]

??? kann das sein, weiter oder anders weiß ich nicht



b) v(x)= [mm] \wurzel{2x} [/mm]  => x^-1/2
   u(v) = [mm] v^{-3} [/mm] = [mm] -3v^{-4} [/mm]

==> [mm] -3(\wurzel{2x} [/mm] )^-4 / x^-1/2

wie weiter? falsch?



c) = 2x/x³ - [mm] x^{5}/x³ [/mm] = 1/2x - 1/3x³  ???


d) = [mm] (x^1/2)^-4 [/mm] + (x²)^-7 = 1/3x³ - 1/13x^-13  ???


wäre nett, wenn jemand mir helfen könnte...

        
Bezug
stammfunktion bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 So 03.12.2006
Autor: blascowitz

Guten abend

zu Teilaufgabe a)

[mm] 1/\wurzel{4x}\gdw 1/(4x^{1/2}) \gdw 4x^{-1/2} [/mm]

Versuch jetzt mal den Term nach den Potenzregeln aufzuleiten
Bei Wurzeln unter dem Bruchstrich immer erst die Wurzel in die Potenzschreibweise bringen und dann versuchen mit Potenzregeln aufzuleiten

So ähnlich geht das auch bei Aufgabe b)

[mm] \bruch{3}{\wurzel{2x}} \gdw \bruch{3}{2x^{1/2}} \gdw 3*2x^{-1/2} [/mm]

Zu Aufgabe c)

Dein Ansatz ist schon richtig zuerst einmal den Bruch vereinfachen

[mm] \bruch{2x-x^{5}}{x^{3}} [/mm]

Das ist dann vereinfacht:
[mm] \bruch{2}{x^2}- x^2 [/mm]

Dann kannst du den jeden Term einzeln aufleiten. Beachte: [mm] \bruch{2}{x^2}\gdw 2x^{-2} [/mm]

Aufgabe d ist dann eine Kombination von a und c. Jeden Term einzeln so aufleiten, wie du es in den Aufgaben davor gemacht hast.

Ich hoffe du kommst so weiter
Schönen abend noch

Bezug
                
Bezug
stammfunktion bilden: Ergebnisse richtig?+2neue
Status: (Frage) überfällig Status 
Datum: 18:28 Di 05.12.2006
Autor: Nightwalker12345

Aufgabe
noch zwei weitere?

e) f(x) = 2 * cos (3x-5)
e2) f(x) = 2 / (4x+1)²

1.Frage: Ist die Aufleitung von -sin x = cos x und von -cos x = -sin x??

Hallo, zuerst mal danke für die Antwort

wollte dann mal fragen, ob das denn jetzt richtig ist von mir zu a-d von den davor gerechneten Aufgaben:


a) F(x) = [mm] 8\wurzel{x} [/mm]
b)F(x)= 2 * [mm] 1/\wurzel{x} [/mm]
c) F(x)= [mm] 1/3x^{-3} [/mm] + 1/3x³
d) F(x) = [mm] 8/3x^{1/1/2} [/mm] + 7/3x³

zu e) F(x) = 2/3 sin (3x-5)

???

wäre nett, wenn jemand was dazu sagen könnte

nun zu meiner eigentlichen Frage:

wie berechne ich e2)

==> 2/ 16x²+8x+1 = einzeln ableiten oder wie?

muss ja - [mm] \bruch{1}{8x-2}rauskommen, [/mm] steht so im Buch, aber darauf komme ich nicht...


vielen dank...

Bezug
                        
Bezug
stammfunktion bilden: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:20 Mi 06.12.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
stammfunktion bilden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:34 Di 05.12.2006
Autor: hase-hh

moin,

bevor ich eine stammfunktion bilde, vereinfache ich doch erstmal, oder?

Stichwort: teilweises Wurzelziehen
a) [mm] \bruch{1}{\wurzel{4x}} [/mm] = [mm] \bruch{1}{2 * \wurzel{x}} [/mm]

in Potenzschreibweise

[mm] \bruch{1}{2}*x^{- \bruch{1}{2} } [/mm]


b) [mm] \bruch{2x-x^5}{x^3} [/mm] = [mm] \bruch{x*(2-x^4)}{x^3} [/mm]

[mm] =\bruch{2-x^4}{x^2} [/mm]  

= [mm] \bruch{2}{x^2} [/mm] - [mm] x^2 [/mm]

usw.

hier ist die anwendung der potenzregeln die halbe miete!

gruß
wolfgang












Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de